• Title/Summary/Keyword: Relative precision

Search Result 698, Processing Time 0.026 seconds

Some considerations for the determination of carbonyl compounds in air: Reaction characteristics of formaldehyde with 2.4-DNPH (대기 중 카보닐 계열 성분의 분석기법의 연구: 포름알데하이드와 DNPH의 반응 특성을 중심으로)

  • Hong, Y.J.;Kim, K.H.
    • Analytical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.43-50
    • /
    • 2005
  • A number of carbonyl compounds including formaldehyde and acetaldehyde are well known for their toxicity and irritancy. Hence, acquisition of both qualitative and quantitative tool for their analysis is essential to resolve issues associated with malodor or indoor pollution. Using HPLC/UV method, we examined various aspects involved in the measurements of formaldehyde in environmental samples. The results of our analysis indicated that its detection was made as low as 0.5 ppb (assuming 5 L of sample volume), while its precision was maintained near 2% in terms of relative standard error (RSE). When the stability of calibration was checked by variability of slope values obtained over long-term period (e.g., one month), its values were found to remain constantly with RSE values of 3%. It was also found that liquid-phase reaction between formaldehyde and DNPH proceed very slowly to attain equilibrium (one and half hour), while requiring adequate amount of DNPH to form their derivatives. The overall results of our study thus suggest that there are a number of factors to consider for the accurate analysis of formaldehyde in ambient air.

Evaluation of Pregnancy and Thyroid Function (임신과 갑상선 기능의 평가)

  • Park, Chang-Eun
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.50 no.1
    • /
    • pp.1-10
    • /
    • 2018
  • During early pregnancy, before the development of a functioning thyroid gland, thyroid stimulating hormone (TSH) is a very sensitive marker of thyroid dysfunction during pregnancy. Normal values have been modified during gestation with a downward shift. The fetus is influenced by the TSH supplied by the mother. TSH and free thyroxine (FT4) concentrations vary during pregnancy and conventional units can vary between laboratories. A downward shift of the TSH reference range occurs during pregnancy, with a decrease in both the lower and upper limits of maternal TSH, relative to the typical non-pregnant TSH reference range. Each laboratory produces its own reference TSH and FT4 concentrations because there are many different assays that yield different results in pregnancy. Therefore, automated immunoassays used for serum FT4 analysis are still used widely, but the important considerations discussed above must be noted. The use of population-based, trimester-specific reference ranges remains the best way to handle this issue The slight downward shift in the upper reference range of TSH occurring in the latter first trimester (7~12 weeks) of pregnancy, typically not observed prior to 7 weeks. Their use indicates high or low levels in a quantitative manner independent of the reference ranges. These data highlight the importance of calculating population-based pregnancy-specific thyroid parameter reference intervals. A precision medicine initiative in this area will require the collection and analysis of a large number of genetic, biological, psychosocial, and environmental variables in large cohorts of individuals. Large prospective randomized controlled trials will be needed to resolve these controversies.

Development of Analytical Method for Determination of Baicalin, Eleutheroside E, and Ligustilide by LC-MS/MS in Raw Materials of Health Functional Foods (LC-MS/MS를 이용한 건강기능식품 원료 중 바이칼린, 엘레우테로사이드 E, 리구스틸라이드 동시분석법 개발)

  • Keum, Eun Hee;Chung, So Young;Lee, Jin Hee;Kim, Meehye
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.3
    • /
    • pp.193-198
    • /
    • 2017
  • Scutellaria baicalensis, Eleutherococcus senticosus, and Angelica sinensis have been used as raw materials for health functional foods. This study was conducted to develop a novel method to analyze levels of baicalin (Scutellaria baicalensis), eleutheroside E (Eleutherococcus senticosus), and ligustilide (Angelica sinensis) simultaneously in health functional foods. The methanol extracted samples were analyzed and quantified via liquid chromatography-tandem mass spectrometry (LC-MS/MS) in the positive ion mode and the negative ion mode using multiple reaction monitoring. Standard calibration curves confirmed linearity with the correlation coefficient ($r^2$) of > 0.99 at $100-2000{\mu}g/mL$ concentration range. The limits of detection (LODs) and limits of quantitation (LOQs) were in the range of $13.0{\sim}35.2{\mu}g/L$ and $39.3{\sim}106.7{\mu}g/L$, respectively. The recovery results ranged between 91.4~109.9% at 3 different concentration levels with relative standard deviations (RSDs) less than 5%. The proposed analytical method was characterized with high accuracy and acceptable precision. The new method would be an effective tool to analyze baicalin, eleutheroside E, and ligustilide simultaneously in raw materials of health functional foods.

Development and Validation of an HPLC Method for the Pharmacokinetic Study of Fexofenadine in Human (테르페나딘 체내동태 연구를 위한 혈청 중 펙소페나딘의 HPLC 정량법 개발 및 검증)

  • Cho, Hye-Young;Kang, Hyun-Ah;Kim, Yoon-Gyoon;Choi, Hoo-Kyun;Lee, Yong-Bok
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.6
    • /
    • pp.437-443
    • /
    • 2005
  • A rapid, selective and sensitive reversed-phase HPLC method for the determination of a major metabolite of terfenadine, fexofenadine, in human serum was developed, validated, and applied to the pharmacokinetic study of terfenadine. Fexofenadine and internal standard, haloperidol were extracted from human serum by liquid-liquid extraction with acetonitrile and analyzed on a $Symmetry^{TM}$ C8 column with the mobile phase of 1% triethylamine phosphate (pH 3.7)-acetonitrile (67:33, v/v, adjusted to pH 5.6 with triethylamine). Detection wavelength of 230 nm for excitation, 280 nm for emission and flow rate of 1.0 mL/min were fixed for the study. The assay robustness for the changes of mobile phase pH, organic solvent content, and flow rate was confirmed by $3^{3}$ factorial design using a fixed fexofenadine concentration (50 ng/mL) with respect to its peak area and retention time. In addition, the ruggedness of this method was investigated at three different laboratories using same quality control (QC) samples. This method showed linear response over the concentration range of 10-500 ng/mL with correlation coefficients greater than 0.999. The lower limit of quantification using 0.5 mL of serum was 10 ng/mL, which was sensitive enough for the pharmacokinetic studies of terfenadine. The overall accuracy of the quality control samples ranged from 95.70 to 114.58% for fexofenadine with overall precision (% C.V.) being 3.53-14.39%. The relative mean recovery of fexofenadine for human serum was 90.17%. Stability studies (freeze-thaw, short-term, extracted serum sample and stock solution) showed that fexofenadine was stable during storage, or during the assay procedure in human serum. However, the storage at $-70^{\circ}C$ for 4 weeks showed that fexofenadine was not stable. The peak area and retention time of fexofenadine were not significantly affected by the changes of mobile phase pH, organic solvent content, and flow rate under the conditions studied. This method showed good ruggedness (within 15% C.V.) and was successfully used for the analysis of fexofenadine in human serum samples for the pharmacokinetic studies of orally administered Tafedine tablet (60 mg as terfenadine) at three different laboratories, demonstrating the suitability of the method.

Development and Validation of an HPLC Method for the Pharmacokinetic Study of Fenoprofen in Human (페노프로펜 체내동태 연구를 위한 혈청 중 페노프로펜의 HPLC 정량법 개발 및 검증)

  • Cho, Hye-Young;Kang, Hyun-Ah;Kim, Yoon-Gyoon;Sah, Hong-Kee;Lee, Yong-Bok
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.6
    • /
    • pp.423-429
    • /
    • 2005
  • A selective and sensitive reversed-phase HPLC method for the determination of fenoprofen in human serum was developed, validated, and applied to the pharmacokinetic study of fenoprofen calcium. Fenoprofen and internal standard, ketoprofen, were extracted from human serum by liquid-liquid extraction with diethyl ether and analyzed on a Luna C18(2) column with the mobile phase of acetonitrile-3 mM potassium dihydrogen phosphate (32:68, v/v, adjusted to pH 6.6 with phosphoric acid). Detection wavelength of 272 nm and flow rate of 0.25 mL/min were fixed for the study. The assay robustness for the changes of mobile phase pH, organic solvent content, and flow rate was confirmed by $3^{3}$ factorial design using a fixed fenoprofen concentration $(2\;{\mu}g/mL)$ with respect to its peak area and retention time. And also, the ruggedness of this method was investigated at three different laboratories using same quality control (QC) samples. This method showed linear response over the concentration range of $0.05-100\;{\mu}g/mL$ with correlation coefficients greater than 0.999. The lower limit of quantification using 1 mL of serum was $0.05\;{\mu}g/mL$, which was sensitive enough for pharmacokinetic studies. The overall accuracy of the quality control samples ranged from 92.27 to 109.20% for fenoprofen with overall precision (% C.V.) being 5.51-11.71 %. The relative mean recovery of fenoprofen for human serum was 81.7%. Stability (freeze-thaw, short and long-term) studies showed that fenoprofen was not stable during storage. But, extracted serum sample and stock solution were allowed to stand at ambient temperature for 12 hr prior to injection without affecting the quantification. The peak area and retention time of fenoprofen were not significantly affected by the changes of mobile phase pH, organic solvent content, and flow rate under the conditions studied. This method showed good ruggedness (within 15% C.V.) and was successfully used for the analysis of fenoprofen in human serum samples for the pharmacokinetic studies of orally administered Fenopron tablet (600 mg as fenoprofen) at three different laboratories, demonstrating the suitability of the method.

Simultaneous Determination of Urinary Phytoestrogens and Estrogens by Gas Chromatography/Mass spectrometry (GC/MS에 의한 뇨 중 Phytoestrogen과 Estrogen의 동시 분석)

  • Yang, Yoon Jung;Lee, Seon Hwa;Chung, Bong Chul
    • Analytical Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.374-385
    • /
    • 1998
  • Phytoestrogens are biologically active compounds derived from plants foods. It had been suggested that phytoestrogens, by inhibiting aromatase in peripheral and/or cancer cells and lowering estrogen levels, may play a protective role as antipromotional compounds during growth of estrogen-dependent cancers. Therefore, simultaneous analysis of estrogens and phytoestrogens is necessary to elucidate the possible involvement of phytoestrogens in estrogen metabolism. In this view, we developed a simple and reproducible procedure to quantitatively determine estrogen and phytoestrogen metabolites. The proposed method consisted of solid phase extraction using preconditioned Serdolit AD-2 resin, enzyme hydrolysis with ${\beta}$-glucuronidase/arylsulfatase from Helix pomatia, liquid-liquid extraction and TMS-ether derivatization. And the final determination was carried out by gas chromatography/mass spectrometry (GC/MS) in selected ion monitoring mode (SIM). The precision and accuracy of this method was evaluated through within-a-day and day-to-day test. Recovery range and detection limit were 71.96~105.66%, 2~4 ng/mL, respectively. Using this method, 17 estrogen and 5 phytoestrogen compositions in urine of normal subjects were analyzed. It was found that amounts and relative distribution of urinary phytoestrigens and estrogens showed different pattern in male and female subjects.

  • PDF

Determination of Natural Gas Components by Gas Chromatographic Multicolumn System (기체 크로마토그래피 복합컬럼 시스템에 의한 천연가스 성분의 정량)

  • Choi, Yong-Wook;Choe, Kun-Hyung
    • Analytical Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.339-347
    • /
    • 1994
  • A multicolumn system consisted of two valve(10-port and 6-port valve)-three column (28% DC 200, SP 1700 and Chromosorb 102 column) was developed. Nine natural gas components composed of $N_2$, $CH_4$, $CO_2$, $C_2H_6$, $C_3H_8$, $i-C_4H_{10}$, $n-C_4H_{10}$, $i-C_5H_{12}$$n-C_5H_{12}$ completed all the baseline separation within 18 minutes. The accuracy and the precision of this system was tested. The retention times and the peak areas were determined with a repeatability between 0.02 and 0.16%, and less than 1%, respectively. Calibration curves for natural-gas components were plotted by the partial pressure injection method of pure gases, and good linear relationships for each component were presented. By using these calibration curves the accuracy of the multicolumn system compaired with that of the single column system for a certified standard gas of natural gas. As a result, relative error in the single and the multicolumn system was less than 0.5% and 0.04%, respectively. The result of application of this system in the analysis of importing LNG composition showed that the heating values calculated by the multicolum system were estimated lower compared with those calculated by the single column system and consequently, the importing price of LNG was able to be cut down.

  • PDF

A study on performance-based evaluation system for NATM tunnels in use: development of evaluation model and validation (공용중인 NATM 터널의 성능중심 평가체계 연구: 평가모형 개발 및 검증)

  • Moon, Joon-Shik;Kim, Hong-Kyoon;An, Jai-Wook;Lee, Jong-Gun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.1
    • /
    • pp.107-120
    • /
    • 2020
  • In a performance-based evaluation of structures in use, the current performance is assessed by summing up the weighting of the evaluation indices for each performance. In this study, to suggest a performance-based evaluation technique for NATM tunnels in use, the performance evaluation indices were derived by examining the characteristics and similarities of each index developed from previous study. The weighting of the evaluation indices was derived by calculating the relative importance of each evaluation indices from the AHP analysis. In order to develop a quantitative evaluation model, grading criteria for each performance index was derived through literature review, and performance evaluation tables for road and railway tunnels were presented. In order to verify the significance of the proposed performance evaluation model, the correlation analysis was performed between each evaluation index and the final evaluation result. In the correlation analysis, the survey data measured through precision safety diagnosis in the tunnel in use was applied. It may be said that the proposed evaluation indices, weighting, criteria and evaluation models for tunnels in use can be applied to the performance-based maintenance system of tunnels.

Development and Validation of an HPLC Method for the Pharmacokinetic Study of Pentoxifylline in Human Serum (체내동태 연구를 위한 혈청 중 펜톡시필린의 HPLC 정량법 개발 및 검증)

  • Cho, Hea-Young;Kang, Hyun-Ah;Yoo, Hee-Doo;Lee, Hwa-Jeong;Moon, Jai-Dong;Lee, Yong-Bok
    • Journal of Pharmaceutical Investigation
    • /
    • v.36 no.2
    • /
    • pp.89-95
    • /
    • 2006
  • A selective and sensitive reversed-phase HPLC method for the determination of pentoxifylline in human serum was developed, validated, and applied to the pharmacokinetic study of pentoxifylline. Pentoxifylline and internal standard, chloramphenicol, were extracted from the serum by liquid-liquid extraction with dichloromethane and analyzed on a Luna CI8(2) column with the mobile phase of acetonitrile-0.034 M phosphoric acid (25:75, v/v, adjusted to pH 4.0 with 10 M NaOH). Detection wavelength of 273 nm and flow rate of 0.8 mL/min were used. This method showed linear response over the concentration range of 10-500 ng/mL with correlation coefficients greater than 0.999. The lower limit of quantification using 0.5 mL of the serum was 10 ng/mL, which was sensitive enough for pharmacokinetic studies of pentoxifylline. The overall accuracy of the quality control samples ranged from 89.3 to 92.7% for pentoxifylline with overall precision (% C.V.) being 4.1-9.2%. The relative mean recovery of pentoxifylline for human serum was 105.8%. Stability (stock solution, short and long-term) studies showed that pentoxifylline was not stable during storage. But three freeze-thaw cycles and extracted serum samples were stable. This method showed good ruggedness (within 15% C.V.) and was successfully applied for the analysis of pentoxifylline in human serum samples for the pharmacokinetic studies of orally administered $Trental^{\circledR}$ tablet (400 mg pentoxifylline), demonstrating the suitability of the method.

Field Performance Evaluation of Candidate Samplers for National Reference Method for PM2.5 (PM2.5 국가기준측정장비 선정을 위한 비교 측정 연구)

  • Lee, Yong Hwan;Park, Jin Su;Oh, Jun;Choi, Jin Soo;Kim, Hyun Jae;Ahn, Joon Young;Hong, You Deog;Hong, Ji Hyung;Han, Jin Seok;Lee, Gangwoong
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.2
    • /
    • pp.157-163
    • /
    • 2015
  • To establish National Reference Method (NRM) for $PM_{2.5}$, operational performance of 5 different commercial gravimetric-based $PM_{2.5}$ measuring instruments was assessed at Bulkwang monitoring station from January 23, 2014 to February 28, 2014. First, physical properties, design, and functional performance of the instruments were assessed. Evaluation was carried out to determine whether operating method for the instruments and levels of QA/QC activities meet the data quality objectives (DQOs). To verify whether DQOs were satisfied, reproducibility of QA/QC procedures, accuracy, relative sensitivity, limit of detection, margin of error, and coefficient of determination of the instruments were also evaluated. Results of flow rate measurement of 15 candidate instruments indicated that all the instruments met performance criteria with accuracy deviation of 4.0% and reproducibility of 0.6%. Comparison of final $PM_{2.5}$ mass concentrations showed that the coefficient of determination ($R^2$) values were greater than or equal to 0.9995, and concentration gradient ranged from 0.97 to 1.03. All the instruments satisfied criteria for NRM with the estimated precision of 1.47~2.60%, accuracy of -1.90~3.00%, and absolute accuracy of 1.02~3.12%. This study found that one particular type of measuring instrument was proved to be excellent, with overall evaluation criteria satisfied.