• Title/Summary/Keyword: Relative pose estimation

Search Result 22, Processing Time 0.045 seconds

Experimental Study of Spacecraft Pose Estimation Algorithm Using Vision-based Sensor

  • Hyun, Jeonghoon;Eun, Youngho;Park, Sang-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.263-277
    • /
    • 2018
  • This paper presents a vision-based relative pose estimation algorithm and its validation through both numerical and hardware experiments. The algorithm and the hardware system were simultaneously designed considering actual experimental conditions. Two estimation techniques were utilized to estimate relative pose; one was a nonlinear least square method for initial estimation, and the other was an extended Kalman Filter for subsequent on-line estimation. A measurement model of the vision sensor and equations of motion including nonlinear perturbations were utilized in the estimation process. Numerical simulations were performed and analyzed for both the autonomous docking and formation flying scenarios. A configuration of LED-based beacons was designed to avoid measurement singularity, and its structural information was implemented in the estimation algorithm. The proposed algorithm was verified again in the experimental environment by using the Autonomous Spacecraft Test Environment for Rendezvous In proXimity (ASTERIX) facility. Additionally, a laser distance meter was added to the estimation algorithm to improve the relative position estimation accuracy. Throughout this study, the performance required for autonomous docking could be presented by confirming the change in estimation accuracy with respect to the level of measurement error. In addition, hardware experiments confirmed the effectiveness of the suggested algorithm and its applicability to actual tasks in the real world.

Design and Verification of Spacecraft Pose Estimation Algorithm using Deep Learning

  • Shinhye Moon;Sang-Young Park;Seunggwon Jeon;Dae-Eun Kang
    • Journal of Astronomy and Space Sciences
    • /
    • v.41 no.2
    • /
    • pp.61-78
    • /
    • 2024
  • This study developed a real-time spacecraft pose estimation algorithm that combined a deep learning model and the least-squares method. Pose estimation in space is crucial for automatic rendezvous docking and inter-spacecraft communication. Owing to the difficulty in training deep learning models in space, we showed that actual experimental results could be predicted through software simulations on the ground. We integrated deep learning with nonlinear least squares (NLS) to predict the pose from a single spacecraft image in real time. We constructed a virtual environment capable of mass-producing synthetic images to train a deep learning model. This study proposed a method for training a deep learning model using pure synthetic images. Further, a visual-based real-time estimation system suitable for use in a flight testbed was constructed. Consequently, it was verified that the hardware experimental results could be predicted from software simulations with the same environment and relative distance. This study showed that a deep learning model trained using only synthetic images can be sufficiently applied to real images. Thus, this study proposed a real-time pose estimation software for automatic docking and demonstrated that the method constructed with only synthetic data was applicable in space.

2D-3D Pose Estimation using Multi-view Object Co-segmentation (다시점 객체 공분할을 이용한 2D-3D 물체 자세 추정)

  • Kim, Seong-heum;Bok, Yunsu;Kweon, In So
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.1
    • /
    • pp.33-41
    • /
    • 2017
  • We present a region-based approach for accurate pose estimation of small mechanical components. Our algorithm consists of two key phases: Multi-view object co-segmentation and pose estimation. In the first phase, we explain an automatic method to extract binary masks of a target object captured from multiple viewpoints. For initialization, we assume the target object is bounded by the convex volume of interest defined by a few user inputs. The co-segmented target object shares the same geometric representation in space, and has distinctive color models from those of the backgrounds. In the second phase, we retrieve a 3D model instance with correct upright orientation, and estimate a relative pose of the object observed from images. Our energy function, combining region and boundary terms for the proposed measures, maximizes the overlapping regions and boundaries between the multi-view co-segmentations and projected masks of the reference model. Based on high-quality co-segmentations consistent across all different viewpoints, our final results are accurate model indices and pose parameters of the extracted object. We demonstrate the effectiveness of the proposed method using various examples.

A Camera Pose Estimation Method for Rectangle Feature based Visual SLAM (사각형 특징 기반 Visual SLAM을 위한 자세 추정 방법)

  • Lee, Jae-Min;Kim, Gon-Woo
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.1
    • /
    • pp.33-40
    • /
    • 2016
  • In this paper, we propose a method for estimating the pose of the camera using a rectangle feature utilized for the visual SLAM. A warped rectangle feature as a quadrilateral in the image by the perspective transformation is reconstructed by the Coupled Line Camera algorithm. In order to fully reconstruct a rectangle in the real world coordinate, the distance between the features and the camera is needed. The distance in the real world coordinate can be measured by using a stereo camera. Using properties of the line camera, the physical size of the rectangle feature can be induced from the distance. The correspondence between the quadrilateral in the image and the rectangle in the real world coordinate can restore the relative pose between the camera and the feature through obtaining the homography. In order to evaluate the performance, we analyzed the result of proposed method with its reference pose in Gazebo robot simulator.

Pose-graph optimized displacement estimation for structural displacement monitoring

  • Lee, Donghwa;Jeon, Haemin;Myung, Hyun
    • Smart Structures and Systems
    • /
    • v.14 no.5
    • /
    • pp.943-960
    • /
    • 2014
  • A visually servoed paired structured light system (ViSP) was recently proposed as a novel estimation method of the 6-DOF (Degree-Of-Freedom) relative displacement in civil structures. In order to apply the ViSP to massive structures, multiple ViSP modules should be installed in a cascaded manner. In this configuration, the estimation errors are propagated through the ViSP modules. In order to resolve this problem, a displacement estimation error back-propagation (DEEP) method was proposed. However, the DEEP method has some disadvantages: the displacement range of each ViSP module must be constrained and displacement errors are corrected sequentially, and thus the entire estimation errors are not considered concurrently. To address this problem, a pose-graph optimized displacement estimation (PODE) method is proposed in this paper. The PODE method is based on a graph-based optimization technique that considers entire errors at the same time. Moreover, this method does not require any constraints on the movement of the ViSP modules. Simulations and experiments are conducted to validate the performance of the proposed method. The results show that the PODE method reduces the propagation errors in comparison with a previous work.

Reliable Camera Pose Estimation from a Single Frame with Applications for Virtual Object Insertion (가상 객체 합성을 위한 단일 프레임에서의 안정된 카메라 자세 추정)

  • Park, Jong-Seung;Lee, Bum-Jong
    • The KIPS Transactions:PartB
    • /
    • v.13B no.5 s.108
    • /
    • pp.499-506
    • /
    • 2006
  • This Paper describes a fast and stable camera pose estimation method for real-time augmented reality systems. From the feature tracking results of a marker on a single frame, we estimate the camera rotation matrix and the translation vector. For the camera pose estimation, we use the shape factorization method based on the scaled orthographic Projection model. In the scaled orthographic factorization method, all feature points of an object are assumed roughly at the same distance from the camera, which means the selected reference point and the object shape affect the accuracy of the estimation. This paper proposes a flexible and stable selection method for the reference point. Based on the proposed method, we implemented a video augmentation system that inserts virtual 3D objects into the input video frames. Experimental results showed that the proposed camera pose estimation method is fast and robust relative to the previous methods and it is applicable to various augmented reality applications.

6 DOF Pose Estimation of Polyhedral Objects Based on Geometric Features in X-ray Images

  • Kim, Jae-Wan;Roh, Young-Jun;Cho, Hyung-S.;Jeon, Hyoung-Jo;Kim, Hyeong-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.63.4-63
    • /
    • 2001
  • An x-ray vision can be a unique method to monitor and analyze the motion of mechanical parts in real time which are invisible from outside. Our problem is to identify the pose, i.e. the position and orientation of an object from x-ray projection images. It is assumed here that the x-ray imaging conditions that include the relative coordinates of the x-ray source and the image plane are predetermined and the object geometry is known. In this situation, an x-ray image of an object at a given pose can be estimated computationally by using a priori known x-ray projection image model. It is based on the assumption that a pose of an object can be determined uniquely to a given x-ray projection image. Thus, once we have the numerical model of x-ray imaging process, x-ray image of the known object at any pose could be estimated ...

  • PDF

Laser pose calibration of ViSP for precise 6-DOF structural displacement monitoring

  • Shin, Jae-Uk;Jeon, Haemin;Choi, Suyoung;Kim, Youngjae;Myung, Hyun
    • Smart Structures and Systems
    • /
    • v.18 no.4
    • /
    • pp.801-818
    • /
    • 2016
  • To estimate structural displacement, a visually servoed paired structured light system (ViSP) was proposed in previous studies. The ViSP is composed of two sides facing each other, each with one or two laser pointers, a 2-DOF manipulator, a camera, and a screen. By calculating the positions of the laser beams projected onto the screens and rotation angles of the manipulators, relative 6-DOF displacement between two sides can be estimated. Although the performance of the system has been verified through various simulations and experimental tests, it has a limitation that the accuracy of the displacement measurement depends on the alignment of the laser pointers. In deriving the kinematic equation of the ViSP, the laser pointers were assumed to be installed perfectly normal to the same side screen. In reality, however, this is very difficult to achieve due to installation errors. In other words, the pose of laser pointers should be calibrated carefully before measuring the displacement. To calibrate the initial pose of the laser pointers, a specially designed jig device is made and employed. Experimental tests have been performed to validate the performance of the proposed calibration method and the results show that the estimated displacement with the initial pose calibration increases the accuracy of the 6-DOF displacement estimation.

Fall Detection Algorithm Based on Machine Learning (머신러닝 기반 낙상 인식 알고리즘)

  • Jeong, Joon-Hyun;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.226-228
    • /
    • 2021
  • We propose a fall recognition system using the Pose Detection of Google ML kit using video data. Using the Pose detection algorithm, 33 three-dimensional feature points extracted from the body are used to recognize the fall. The algorithm that recognizes the fall by analyzing the extracted feature points uses k-NN. While passing through the normalization process in order not to be influenced in the size of the human body within the size of image and image, analyzing the relative movement of the feature points and the fall recognizes, thirteen of the thriteen test videos recognized the fall, showing an 100% success rate.

  • PDF