• Title/Summary/Keyword: Relative heave motion

Search Result 17, Processing Time 0.024 seconds

Hydrodynamic Responses of Spar Hull with Single and Double Heave Plates in Random Waves

  • Sudhakar, S.;Nallayarasu, S.
    • International Journal of Ocean System Engineering
    • /
    • v.4 no.1
    • /
    • pp.1-18
    • /
    • 2014
  • Heave plates have been widely used to enhance viscous damping and thus reduces the heave response of Spar platforms. Single heave plate attached to the keel of the Spar has been reported in literature (Tao and Cai 2004). The effect of double heave plates on hydrodynamic response in random waves has been investigated in this study. The influence of relative spacing $L_d/D_d$ ($D_d$-the diameter of the heave plate) on the hydrodynamic response in random waves has been simulated in wave basin experiments and numerical model. The experimental investigation has been carried out using 1:100 scale model of Spar with double heave plates in random waves for different relative spacing and varying wave period. The influence of relative spacing between the heave plates on the motion responses of Spar are evaluated and presented. Numerical investigation has been carried out to investigate effect of relative spacing on hydrodynamic characteristics such as heave added mass and hydrodynamic responses. The measured results were compared with those obtained from numerical simulation and found to be in good agreement. Experimental and numerical simulation shows that the damping coefficient and added mass does not increase for relative spacing of 0.4 and the effect greater than relative spacing on significant heave response is insignificant.

Model Test of Dual-Buoy Wave Energy Converter using Multi-resonance (다중 공진을 이용한 이중 부이 파력발전장치의 모형실험)

  • Kim, Jeong-Rok;Hyeon, Jong-Wu;Koh, Hyeok-Jun;Kweon, Hyuck-Min;Cho, Il-Hyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.2
    • /
    • pp.191-198
    • /
    • 2015
  • In this study, we proposed a new type of dual-buoy wave energy converter (WEC) exploiting multi-resonance and analyzed the experimental results from a model test in a 2-D wave flume. A dual-buoy WEC using multi-resonance has two advantages: high efficiency at the resonant frequencies and the potential to extend the frequency range available to extract wave power from the WEC. The suggested WEC was composed of an outer buoy and an inner buoy sliding vertically inside the outer buoy. As the power take-off device, a linear electric generator (LEG) consisting of permanent magnets and coils fixed at each buoy was adopted. Electricity was produced by the relative heave motion between the two buoys. To search for the optimal shape of a dual-buoy WEC, we conducted experiments on the heave motion of a two-body system in regular waves without an LEG installed. Model tests with six combinations of experimental models were conducted in order to find the motion characteristics of a dual-buoy WEC. It was found that model 2, which included a ring-shaped appendage to move the resonant frequency of the outer buoy toward a high value, showed a higher relative heave response amplitude operator (RAO) curve than model 1. In addition, the double-peak shape of the heave RAO curve shown for model 2 indicated the extension of the frequency range for extracting wave power in irregular waves.

Hydrodynamic Response of Spar with Single and Double Heave Plates in Regular Waves

  • Sudhakar, S.;Nallayarasu, S.
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.4
    • /
    • pp.188-208
    • /
    • 2013
  • The motion response of floating structures should be adequately low to permit the operation of rigid risers along with dry well heads. Though Spar platforms have low heave responses under lower sea state, could become unacceptable in near resonance region of wave periods. Hence the hydrodynamic response, heave in particular, must be examined to ensure that it is minimized. To reduce heave motions, external damping devices are introduced and one such effective damping device is heave plate. Addition of heave plate can provide additional viscous damping and additional added mass in the heave direction which influence the heave motion. The present study focuses on the influence of heave plate on the hydrodynamic responses of Classic Spar in regular waves. The experimental investigation has been carried out on a 1:100 scale model of Spar with single and double heave plates in regular waves. Numerical investigation has been carried out to derive the hydrodynamic responses using ANSYS AQWA. The experimental results were compared with those obtained from numerical simulation and found to be in good agreement. The influence of disk diameter ratio, wave steepness, pretension in the mooring line and relative spacing between the plates on the hydrodynamic responses of Spar are evaluated and presented.

A Study on the Relative Bow Motion in Irrugular Sea (불규칙해면에서 선수부의 상대운동에 관한 연구)

  • 윤점동;김종훈;김기윤
    • Journal of the Korean Institute of Navigation
    • /
    • v.13 no.2
    • /
    • pp.37-55
    • /
    • 1989
  • When a ship is sailing on the sea, she has the six-degrees of freedom of motion. It means that she meets a lot of dangerous situations. Especially, when the VLCC is travelling in irregular sea, the slamming, the deck-wetness and the propeller racing are occured with the sea state she is on. These are the representative steps that a heave-to and a scudding are used for a ship building , but for a predominance in both. The author intends to clarify this problem theoretically. The methods of statistical calculation are based with the ITTC spectral formulation and with the assumption that the wave height histogram follows the Rayleigh distribution. In this study, the author gives an attention on the relative bow motion to a wave in the irregular sea. It is verified that the relative diplacement at the bow to sea level in the following sea is less than that in the head sea. It is confirmed that, therefore, one have to sail with scudding when he is threatened to heave-to at a rough sea. But he must bear the propeller racing in mind in the cases.

  • PDF

Wave energy converter by using relative heave motion between buoy and inner dynamic system

  • Cho, I.H.;Kim, M.H.;Kweon, H.M.
    • Ocean Systems Engineering
    • /
    • v.2 no.4
    • /
    • pp.297-314
    • /
    • 2012
  • Power-take-off through inner dynamic system inside a floating buoy is suggested. The power take-off system is characterized by mass, stiffness, and damping and generates power through the relative heave motion between the buoy and inner mass (magnet or amateur). A systematic hydrodynamic theory is developed for the suggested WEC and the developed theory is illustrated by a case study. A vertical truncated cylinder is selected as a buoy and the optimal condition of the inner dynamic system for maximum PTO (power take off) through double resonance for the given wave condition is systematically investigated. Through the case study, it is seen that the maximum power can actually be obtained at the optimal spring and damper condition, as predicted by the developed WEC theory. However, the band-width of high performance region is not necessarily the greatest at the optimal (maximum-power-take-off) condition, so it has to be taken into consideration in the actual design of the WEC.

Enhancement of wave-energy-conversion efficiency of a single power buoy with inner dynamic system by intentional mismatching strategy

  • Cho, I.H.;Kim, M.H.
    • Ocean Systems Engineering
    • /
    • v.3 no.3
    • /
    • pp.203-217
    • /
    • 2013
  • A PTO (power-take-off) mechanism by using relative heave motions between a floating buoy and its inner mass (magnet or amateur) is suggested. The inner power take-off system is characterized by a mass with linear stiffness and damping. A vertical truncated cylinder is selected as a buoy and a special station-keeping system is proposed to minimize pitch motions while not affecting heave motions. By numerical examples, it is seen that the maximum power can actually be obtained at the optimal spring and damper condition, as predicted by the developed WEC(wave energy converter) theory. Then, based on the developed theory, several design strategies are proposed to further enhance the maximum PTO, which includes the intentional mismatching among heave natural frequency of the buoy, natural frequency of the inner dynamic system, and peak frequency of input wave spectrum. By using the intentional mismatching strategy, the generated power is actually increased and the required damping value is significantly reduced, which is a big advantage in designing the proposed WEC with practical inner LEG (linear electric generator) system.

Dynamic Design of a Mass-Spring Type Translational Wave Energy Converter (파력발전용 병진 질량-스프링식 파력 변환장치의 동적설계)

  • Choi, Young-Hyu;Lee, Chang-Jo;Hong, Dae-Sun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.1
    • /
    • pp.182-189
    • /
    • 2012
  • This study suggests a dynamic design process for deciding properly design parameters of a mass-spring type Wave Energy Converter (WEC) to achieve sufficient energy conversion from wave to power generator. The WEC mechanism, in this research, consists of a rigid sprung body, a platform, suspension springs and dampers. The rigid sprung body is supported on the platform via springs and dampers and vibrates translationally in the heave direction under wave excitation. At last the resulting heave motion of the sprung body is transmitted to rotating motion of the electric generator by rack and pinion, and transmission gears. For the purpose of vibration analysis, the WEC mechanism has been simply modelled as a mass-spring-damper system under harmonic base excitation. Its maximum displacement transmissibility and steady state response can be determined by using elementary vibration theory if the harmonic ocean wave data were provided. With the vibration analysis results, the suggested dynamic design process of WEC can determine all the design parameters of the WEC mechanism, such as sprung body mass, suspension spring constant, and damping coefficient that can give sufficient relative displacement transmissibility and the associated inertia moment to drive the electric generator and transmission gears.

Extraction of Wave Energy Using the Coupled Heaving Motion of a Circular Cylinder and Linear Electric Generator (원기둥과 선형발전기의 연성 수직운동을 이용한 파 에너지 추출)

  • Cho, Il-Hyoung;Kweon, Hyuck-Min
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.9-16
    • /
    • 2011
  • The feasibility of wave energy extraction from a heaving truncated cylinder and the corresponding response of the linear electric generator (LEG) composed of spring, magnet, and coil has been investigated in the frame of three-dimensional linear potential theory. The heaving motion of a circular cylinder is calculated by means of the matched eigenfunction expansion method. Further, the analytical results are validated by numerical results using the ANSYS AQWA commercial code. By the action of a heaving circular cylinder, the magnet suspended by a spring can slide vertically inside the heaving cylinder. The mechanical power is extracted from the magnet motion relative to the coil/stator which is attached to the cylinder. The coupled ODE of a heaving cylinder and LEG system in waves is derived to obtain the magnet motion relative to a cylinder. To maximize the relative motion of the magnet, both the buoy draft and the LEG system parameters (spring stiffness, damping) should be selected properly for generating the double resonance considering the peak frequency of the target spectrum.

Numerical Analysis of Ship Motions in Beam Sea Using Unsteady RANS and Overset Grid Methods (비정상 RANS 법과 중첩격자계를 이용한 횡파중 선박운동 수치해석)

  • Park, Il-Ryong;Hosseini, Seyed Hamid Sadat;Stern, Frederick
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.2
    • /
    • pp.109-123
    • /
    • 2008
  • The present paper presents the CFD result for a beam wave test case. An ONR tumblehome ship model with bilge keels is used. The beam wave test is for zero forward speed and roll and heave 2DOF with wave slope $a_k=0.156$ and wavelength ${\lambda}=1.12L_{PP}$, with $L_{PP}$ the ship length. The problems is solved numerically with an unsteady Reynolds averaged Navier-Stokes approach. The free surface flow is computed using a single-phase level-set method and the motions in each time step are integrated using a predictor-corrector iteration approach which uses dynamic overset grids moving with relative ship motion. The predicted CFD results for motions and forces are compared with experimental data, showing a reasonable agreement.

Behavier of the Large Tanker in Longitudinal Regular Waves (초대형선(超大型船)의 선형(船型) -종규칙파(縱規則波) 중에서의 운동응답(運動應答)에 대(對)하여)

  • Zae-Geun,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.12 no.1
    • /
    • pp.37-40
    • /
    • 1975
  • Heave and pitch amplitude and phase lag, relative vertical displacement, velocity and acceralation at bow as bow motion and wave exciting force and moment of a DWT 260,000 ton class tanker in the regular head wave have been calculated. All the calculations have been made by the computer program SD08 of Seoul National University. As the results it is cleared heave amplitude and acceralation have large value in the ballast condition and low Froude-number than full load condition and higher Froude numer as for as the $\frac{\lambda}{L}$ is lower than near around 1.0, however they have quite large values as $\frac{\lambda}{L}$ goes up.

  • PDF