• Title/Summary/Keyword: Relative criteria

Search Result 718, Processing Time 0.026 seconds

Studies on the chemical composition of citrus fruits in Korea(II) -Changes of acid and sugar components with growth- (한국산(韓國産) 감귤류(柑橘類)의 화학성분(化學成分)에 관(關)한 연구(硏究) (II) -주요품종별(主要品種別) 당(糖) 및 산조성(酸組成)의 시기별(時期別) 변화(變化)에 관(關)하여-)

  • Park, H.;Kim, Y.S.;Kim, Z.U.
    • Applied Biological Chemistry
    • /
    • v.9
    • /
    • pp.41-57
    • /
    • 1968
  • Changes of acids (total, titratable and combined form) and sugars (total, reducing and non-reducing) in the edible part and the rind of 17 varieties the in growing and ripening period were investigated. The results were summarized as follows. 1) The percentage of rind was notably decreased in growing period and slightly in the ripening period- It may suggest that the rates of translocation of metabolite from leaves to each part of fruit are different with growth phase. 2) The heavier the weight of fruit, the higher the percentage of rind was and the varieties having over 200 g per fruit showed the value over 30 in the rind percentage and over 15 in the number seeds per fruit. 3) Total acid contents in the rind were highest at the maximum grow th of fruit except in Citrus grandis having tie lowest value (below 20 me/100 g F.W). of total acid at maximum point in which total acid content is steadily increase. 4) Total acid and titratable acid in the edible part and total acid and combined acid in whole fruit life showed 0.933 and 0.970 of correlation coefficient significant at 1% level respectively, and most acid in the edible part was titratable acid(73%) whereas acid in the rind consists mostly of combined acid. 5) The content of combined acid in the ripening period increased in the edible part and decreased in the rind. It may be contributed to translocation of some cations from the rind to the edible part. 6) The grouping criteria on citrus fruit were applicable on melon, watermelon and tomatoes. 7) The contents of total sugar and non-reducing sugar in the edible part were continuously increased whereas the content of reducing sugar were decreased in certain varieties, notablly in citrus natsudaidai. The correlation coefficient between total sugar and reducing sugar in the edible part with ripening decreased as $0.849^{**},\;0.732^{**}.\;0.583^*$. ( $^{**}$: significant at 1% level and $^{*}:$: at 5%) 8) 61% of total sugar in the edible part was non-reducing sugar whereas 88% of total sugar in the rind was reducing form at the end of ripening and the correlation coefficient between total and non-reducing sugar in the edible part was 0.861 end total and reducing sugar in the rind was 0.972, both significant at 1% level. 9) Varieties having the percentage of the rind below 36 showed higher value than I in the ratio of total sugar in the edible part to one in the rind. It may suggest that there exists any intimate relation between relative sugar content and growth rate of fruit parts. 10) Citrus unshiu in Guje island showed lower values in the content of acid and sugar, and the rind percentage but higher sweetness index (the ratio of total sugar to titratable acid) comparing with the same variety in Jeiu.

  • PDF

An Intelligent Decision Support System for Selecting Promising Technologies for R&D based on Time-series Patent Analysis (R&D 기술 선정을 위한 시계열 특허 분석 기반 지능형 의사결정지원시스템)

  • Lee, Choongseok;Lee, Suk Joo;Choi, Byounggu
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.3
    • /
    • pp.79-96
    • /
    • 2012
  • As the pace of competition dramatically accelerates and the complexity of change grows, a variety of research have been conducted to improve firms' short-term performance and to enhance firms' long-term survival. In particular, researchers and practitioners have paid their attention to identify promising technologies that lead competitive advantage to a firm. Discovery of promising technology depends on how a firm evaluates the value of technologies, thus many evaluating methods have been proposed. Experts' opinion based approaches have been widely accepted to predict the value of technologies. Whereas this approach provides in-depth analysis and ensures validity of analysis results, it is usually cost-and time-ineffective and is limited to qualitative evaluation. Considerable studies attempt to forecast the value of technology by using patent information to overcome the limitation of experts' opinion based approach. Patent based technology evaluation has served as a valuable assessment approach of the technological forecasting because it contains a full and practical description of technology with uniform structure. Furthermore, it provides information that is not divulged in any other sources. Although patent information based approach has contributed to our understanding of prediction of promising technologies, it has some limitations because prediction has been made based on the past patent information, and the interpretations of patent analyses are not consistent. In order to fill this gap, this study proposes a technology forecasting methodology by integrating patent information approach and artificial intelligence method. The methodology consists of three modules : evaluation of technologies promising, implementation of technologies value prediction model, and recommendation of promising technologies. In the first module, technologies promising is evaluated from three different and complementary dimensions; impact, fusion, and diffusion perspectives. The impact of technologies refers to their influence on future technologies development and improvement, and is also clearly associated with their monetary value. The fusion of technologies denotes the extent to which a technology fuses different technologies, and represents the breadth of search underlying the technology. The fusion of technologies can be calculated based on technology or patent, thus this study measures two types of fusion index; fusion index per technology and fusion index per patent. Finally, the diffusion of technologies denotes their degree of applicability across scientific and technological fields. In the same vein, diffusion index per technology and diffusion index per patent are considered respectively. In the second module, technologies value prediction model is implemented using artificial intelligence method. This studies use the values of five indexes (i.e., impact index, fusion index per technology, fusion index per patent, diffusion index per technology and diffusion index per patent) at different time (e.g., t-n, t-n-1, t-n-2, ${\cdots}$) as input variables. The out variables are values of five indexes at time t, which is used for learning. The learning method adopted in this study is backpropagation algorithm. In the third module, this study recommends final promising technologies based on analytic hierarchy process. AHP provides relative importance of each index, leading to final promising index for technology. Applicability of the proposed methodology is tested by using U.S. patents in international patent class G06F (i.e., electronic digital data processing) from 2000 to 2008. The results show that mean absolute error value for prediction produced by the proposed methodology is lower than the value produced by multiple regression analysis in cases of fusion indexes. However, mean absolute error value of the proposed methodology is slightly higher than the value of multiple regression analysis. These unexpected results may be explained, in part, by small number of patents. Since this study only uses patent data in class G06F, number of sample patent data is relatively small, leading to incomplete learning to satisfy complex artificial intelligence structure. In addition, fusion index per technology and impact index are found to be important criteria to predict promising technology. This study attempts to extend the existing knowledge by proposing a new methodology for prediction technology value by integrating patent information analysis and artificial intelligence network. It helps managers who want to technology develop planning and policy maker who want to implement technology policy by providing quantitative prediction methodology. In addition, this study could help other researchers by proving a deeper understanding of the complex technological forecasting field.

Development of Analytical Method for Detection of Fungicide Validamycin A Residues in Agricultural Products Using LC-MS/MS (LC-MS/MS를 이용한 농산물 중 살균제 Validamycin A의 시험법 개발)

  • Park, Ji-Su;Do, Jung-Ah;Lee, Han Sol;Park, Shin-min;Cho, Sung Min;Shin, Hye-Sun;Jang, Dong Eun;Cho, Myong-Shik;Jung, Yong-hyun;Lee, Kangbong
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.1
    • /
    • pp.22-29
    • /
    • 2019
  • Validamycin A is an aminoglycoside fungicide produced by Streptomyces hygroscopicus that inhibits trehalase. The purpose of this study was to develop a method for detecting validamycin A in agricultural samples to establish MRL values for use in Korea. The validamycin A residues in samples were extracted using methanol/water (50/50, v/v) and purified with a hydrophilic-lipophilic balance (HLB) cartridges. The analyte was quantified and confirmed by liquid chromatograph-tandem mass spectrometer (LC-MS/MS) in positive ion mode using multiple reaction monitoring (MRM). Matrix-matched calibration curves were linear over the calibration ranges (0.005~0.5 ng) into a blank extract with $R^2$ > 0.99. The limits of detection and quantification were 0.005 and 0.01 mg/kg, respectively. For validation validamycin A, recovery studies were carried out three different concentration levels (LOQ, $LOQ{\times}10$, $LOQ{\times}50$, n = 5) with five replicates at each level. The average recovery range was from 72.5~118.3%, with relative standard deviation (RSD) less than 10.3%. All values were consistent with the criteria ranges requested in the Codex guidelines (CAC/GL 40-1993, 2003) and the NIFDS (National Institute of Food and Drug Safety) guideline (2016). Therefore, the proposed analytical method is accurate, effective and sensitive for validamycin A determination in agricultural commodities.

Development and Validation of the Analytical Method for Oxytetracycline in Agricultural Products using QuEChERS and LC-MS/MS (QuEChERS법 및 LC-MS/MS를 이용한 농산물 중 Oxytetracycline의 잔류시험법 개발 및 검증)

  • Cho, Sung Min;Do, Jung-Ah;Lee, Han Sol;Park, Ji-Su;Shin, Hye-Sun;Jang, Dong Eun;Cho, Myong-Shik;Jung, ong-hyun;Lee, Kangbong
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.3
    • /
    • pp.227-234
    • /
    • 2019
  • An analytical method was developed for the determination of oxytetracycline in agricultural products using the QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method by liquid chromatography-tandem mass spectrometry (LC-MS/MS). After the samples were extracted with methanol, the extracts were adjusted to pH 4 by formic acid and sodium chloride was added to remove water. Dispersive solid phase extraction (d-SPE) cleanup was carried out using $MgSO_4$ (anhydrous magnesium sulfate), PSA (primary secondary amine), $C_{18}$ (octadecyl) and GCB (graphitized carbon black). The analytes were quantified and confirmed with LC-MS/MS using ESI (electrospray ionization) in positive ion MRM (multiple reaction monitoring) mode. The matrix-matched calibration curves were constructed using six levels ($0.001{\sim}0.25{\mu}g/mL$) and coefficient of determination ($r^2$) was above 0.99. Recovery results at three concentrations (LOQ, $10{\times}LOQ$, and $50{\times}LOQ$, n=5) were from 80.0 to 108.2% with relative standard deviations (RSDs) less than of 11.4%. For inter-laboratory validation, the average recovery was in the range of 83.5~103.2% and the coefficient of variation (CV) was below 14.1%. All results satisfied the criteria ranges requested in the Codex guidelines (CAC/GL 40-1993, 2003) and the Food Safety Evaluation Department guidelines (2016). The proposed analytical method was accurate, effective and sensitive for oxytetracycline determination in agricultural commodities. This study could be useful for safety management of oxytetracycline residues in agricultural products.

Development of a Simultaneous Analytical Method for Determination of Insecticide Broflanilide and Its Metabolite Residues in Agricultural Products Using LC-MS/MS (LC-MS/MS를 이용한 농산물 중 살충제 Broflanilide 및 대사물질 동시시험법 개발)

  • Park, Ji-Su;Do, Jung-Ah;Lee, Han Sol;Park, Shin-min;Cho, Sung Min;Kim, Ji-Young;Shin, Hye-Sun;Jang, Dong Eun;Jung, Yong-hyun;Lee, Kangbong
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.2
    • /
    • pp.124-134
    • /
    • 2019
  • An analytical method was developed for the determination of broflanilide and its metabolites in agricultural products. Sample preparation was conducted using the QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method and LC-MS/MS (liquid chromatograph-tandem mass spectrometer). The analytes were extracted with acetonitrile and cleaned up using d-SPE (dispersive solid phase extraction) sorbents such as anhydrous magnesium sulfate, primary secondary amine (PSA) and octadecyl ($C_{18}$). The limit of detection (LOD) and quantification (LOQ) were 0.004 and 0.01 mg/kg, respectively. The recovery results for broflanilide, DM-8007 and S(PFP-OH)-8007 ranged between 90.7 to 113.7%, 88.2 to 109.7% and 79.8 to 97.8% at different concentration levels (LOQ, 10LOQ, 50LOQ) with relative standard deviation (RSD) less than 8.8%. The inter-laboratory study recovery results for broflanilide and DM-8007 and S (PFP-OH)-8007 ranged between 86.3 to 109.1%, 87.8 to 109.7% and 78.8 to 102.1%, and RSD values were also below 21%. All values were consistent with the criteria ranges requested in the Codex guidelines (CAC/GL 40-1993, 2003) and the Food and Drug Safety Evaluation guidelines (2016). Therefore, the proposed analytical method was accurate, effective and sensitive for broflanilide determination in agricultural commodities.

A Methodology of Customer Churn Prediction based on Two-Dimensional Loyalty Segmentation (이차원 고객충성도 세그먼트 기반의 고객이탈예측 방법론)

  • Kim, Hyung Su;Hong, Seung Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.111-126
    • /
    • 2020
  • Most industries have recently become aware of the importance of customer lifetime value as they are exposed to a competitive environment. As a result, preventing customers from churn is becoming a more important business issue than securing new customers. This is because maintaining churn customers is far more economical than securing new customers, and in fact, the acquisition cost of new customers is known to be five to six times higher than the maintenance cost of churn customers. Also, Companies that effectively prevent customer churn and improve customer retention rates are known to have a positive effect on not only increasing the company's profitability but also improving its brand image by improving customer satisfaction. Predicting customer churn, which had been conducted as a sub-research area for CRM, has recently become more important as a big data-based performance marketing theme due to the development of business machine learning technology. Until now, research on customer churn prediction has been carried out actively in such sectors as the mobile telecommunication industry, the financial industry, the distribution industry, and the game industry, which are highly competitive and urgent to manage churn. In addition, These churn prediction studies were focused on improving the performance of the churn prediction model itself, such as simply comparing the performance of various models, exploring features that are effective in forecasting departures, or developing new ensemble techniques, and were limited in terms of practical utilization because most studies considered the entire customer group as a group and developed a predictive model. As such, the main purpose of the existing related research was to improve the performance of the predictive model itself, and there was a relatively lack of research to improve the overall customer churn prediction process. In fact, customers in the business have different behavior characteristics due to heterogeneous transaction patterns, and the resulting churn rate is different, so it is unreasonable to assume the entire customer as a single customer group. Therefore, it is desirable to segment customers according to customer classification criteria, such as loyalty, and to operate an appropriate churn prediction model individually, in order to carry out effective customer churn predictions in heterogeneous industries. Of course, in some studies, there are studies in which customers are subdivided using clustering techniques and applied a churn prediction model for individual customer groups. Although this process of predicting churn can produce better predictions than a single predict model for the entire customer population, there is still room for improvement in that clustering is a mechanical, exploratory grouping technique that calculates distances based on inputs and does not reflect the strategic intent of an entity such as loyalties. This study proposes a segment-based customer departure prediction process (CCP/2DL: Customer Churn Prediction based on Two-Dimensional Loyalty segmentation) based on two-dimensional customer loyalty, assuming that successful customer churn management can be better done through improvements in the overall process than through the performance of the model itself. CCP/2DL is a series of churn prediction processes that segment two-way, quantitative and qualitative loyalty-based customer, conduct secondary grouping of customer segments according to churn patterns, and then independently apply heterogeneous churn prediction models for each churn pattern group. Performance comparisons were performed with the most commonly applied the General churn prediction process and the Clustering-based churn prediction process to assess the relative excellence of the proposed churn prediction process. The General churn prediction process used in this study refers to the process of predicting a single group of customers simply intended to be predicted as a machine learning model, using the most commonly used churn predicting method. And the Clustering-based churn prediction process is a method of first using clustering techniques to segment customers and implement a churn prediction model for each individual group. In cooperation with a global NGO, the proposed CCP/2DL performance showed better performance than other methodologies for predicting churn. This churn prediction process is not only effective in predicting churn, but can also be a strategic basis for obtaining a variety of customer observations and carrying out other related performance marketing activities.

Effects of TR and Consumer Readiness on SST Usage Motivation, Attitude and Intention (기술 준비도와 소비자 준비도가 Self Service Technology 사용동기와 태도 및 사용의도에 미치는 영향)

  • Shim, Hyeon Sook;Han, Sang Lin
    • Asia Marketing Journal
    • /
    • v.14 no.1
    • /
    • pp.25-51
    • /
    • 2012
  • Researches about the relationship between SST(Self Service Technology) and TRI(Technology Readiness Index) have been carried out after TRI was developed by Parasuraman and his colleagues(2000). We hypothesize Consumer Readiness can also influence consumer's motivation, attitude, and intent to use SST. Currently, there has been no research on this subject. In this study, we investigated the relationship between TR, Consumer Readiness and SST Core Attitudinal Model which Dabholkar & Bagozzi(1994) proposed. The researchers also investigated moderating effects of consumer traits and situational factors to verify the acceptance of such forms of service delivery by all kinds of consumers and under different situational contexts. Self consciousness, the need for interaction with an employee, and the technology anxiety were used as consumer trait variables. Perceived waiting time and perceived crowding were used as situational variables. 380 questionnaires were distributed to a sample group of people in their 20's and 30's, and the data were analyzed with structural equation model using AMOS 18.0 program. All of Cronbach's alpha values representing reliabilities were satisfactory. The values of Composite Reliability(CR) and Average Variance Extracted(AVE) also showed the above criteria, thus providing evidence of convergent validity. To confirm discriminant validity among the constructs, confirmatory factor analysis and correlations among all the variables were examined. The results were satisfactory. The results of this study are summarized as follows. 1. Optimism and innovativeness of TR partially influenced the motivation to use SST. People who tend to be optimistic use SST because of ease of use and fun. The innovative however, usually use SST due to its performance. However, consumer readiness of role clarity, ability and self-efficacy influence all the components of motivation to use SST, ease of use, performance and fun. The relative effect of consumer readiness on the motivation to use SST was much stronger and more significant than that of TR. No other previous studies have examined the effects of Consumer Readiness on SST usage motivation, attitude and intention. It is academically meaningful that the researchers verified that Consumer Readiness is the important precedent construct influencing the self service technology core Attitudinal Model. Our findings suggest that marketers should consider fun and ease of use attributes to promote the use of self service technology. In addition, the SST usage frequency will rise rapidly when role clarity, ability, and self-efficacy which anybody can easily handle SST is assured. If the SST usage rate is increased, waiting times for customers could be decreased. Shorter waiting time could lead to higher customer satisfaction. It may also result in making a long-term profit owing to the reduced number of employees. Thus, presentation of using SST by employees or videos showing how to use it will promote the usage attitude and intent. 2. In SST core attitudinal model, performance and fun factors among SST usage motivation affected attitudes of using SST. The attitude of using SST highly influenced intent to use SST. This result is consistent with previous researches that dealt with the relationship between motivation, attitude and intention. Expectation of using SST could result in good performance just like the effect of ordering menu to service employees and to have fun since fun during its use could promote more SST usage rate. 3. In the relationship among motivation, attitude and intent in SST core attitudinal model, the moderating effect of consumer traits(self-consciousness, need for interaction with service employees and technology anxiety) and situational factors(perceived crowding and perceived waiting time) were tested. The results also supported the hypothesized moderating effects except perceived crowding. The highly self-conscious tended to form attitudes to use SST because of its fun compared to those who were less self-conscious because of its performance. People who had a high need for interaction with service employees tended to use SST for its performance. This result indicates that if ordering results are assured, SST is easily accessible to even consumers who have a high need for interaction with a service employee. When SST is easy to use, attitudes strengthen intent among people who had a high level of anxiety of technology. People who had low technology anxiety formed attitudes to use SST because of its performance. Service firms must ensure their self service technology is designed to be easy to use for those who have a high level of technology anxiety. Shorter perceived waiting times strengthened the attitude to use self service technology because of its fun. If the fun aspect is assured, people willing to use self service technology even perceive waiting time to be shorter than it actually is. Greater perceived waiting times form higher level of intent to use self service technology than those of shorter perceived waiting times. This implies that people view self service technology as a faster alternative to ordering service employees. The fun aspect of self service technology will attract a higher rate of usage for self service technology. 4. It has been proven that ease of use, performance and fun aspects are very important factors in motivation to form attitudes and intent to use self service technology regardless of the amount of perceived waiting time, self-consciousness, need for interaction with service employees, and technology anxiety. Service firms must consider these motivation aspects(ease of use, performance and fun)strongly in their promotion to use self service technology. Ease of use, assuring absolute performance compared to interaction with service employees', and adding a fun aspect will positively strengthen consumers' attitudes and intent to use self service technology. Summarizing the moderating effects, fun is the most valuable factor triggering SST usage attitude and intention. Therefore, designing self service technology to be fun will be the key to its success. This study focused on the touch screen self service technology in fast food restaurant. Although it has its limits due to the fact that it is hard to generalize the results to any other self service technology, the conceptual framework of this study can be applied to future research of any other service site.

  • PDF

Analysis of Greenhouse Thermal Environment by Model Simulation (시뮬레이션 모형에 의한 온실의 열환경 분석)

  • 서원명;윤용철
    • Journal of Bio-Environment Control
    • /
    • v.5 no.2
    • /
    • pp.215-235
    • /
    • 1996
  • The thermal analysis by mathematical model simulation makes it possible to reasonably predict heating and/or cooling requirements of certain greenhouses located under various geographical and climatic environment. It is another advantages of model simulation technique to be able to make it possible to select appropriate heating system, to set up energy utilization strategy, to schedule seasonal crop pattern, as well as to determine new greenhouse ranges. In this study, the control pattern for greenhouse microclimate is categorized as cooling and heating. Dynamic model was adopted to simulate heating requirements and/or energy conservation effectiveness such as energy saving by night-time thermal curtain, estimation of Heating Degree-Hours(HDH), long time prediction of greenhouse thermal behavior, etc. On the other hand, the cooling effects of ventilation, shading, and pad ||||&|||| fan system were partly analyzed by static model. By the experimental work with small size model greenhouse of 1.2m$\times$2.4m, it was found that cooling the greenhouse by spraying cold water directly on greenhouse cover surface or by recirculating cold water through heat exchangers would be effective in greenhouse summer cooling. The mathematical model developed for greenhouse model simulation is highly applicable because it can reflects various climatic factors like temperature, humidity, beam and diffuse solar radiation, wind velocity, etc. This model was closely verified by various weather data obtained through long period greenhouse experiment. Most of the materials relating with greenhouse heating or cooling components were obtained from model greenhouse simulated mathematically by using typical year(1987) data of Jinju Gyeongnam. But some of the materials relating with greenhouse cooling was obtained by performing model experiments which include analyzing cooling effect of water sprayed directly on greenhouse roof surface. The results are summarized as follows : 1. The heating requirements of model greenhouse were highly related with the minimum temperature set for given greenhouse. The setting temperature at night-time is much more influential on heating energy requirement than that at day-time. Therefore It is highly recommended that night- time setting temperature should be carefully determined and controlled. 2. The HDH data obtained by conventional method were estimated on the basis of considerably long term average weather temperature together with the standard base temperature(usually 18.3$^{\circ}C$). This kind of data can merely be used as a relative comparison criteria about heating load, but is not applicable in the calculation of greenhouse heating requirements because of the limited consideration of climatic factors and inappropriate base temperature. By comparing the HDM data with the results of simulation, it is found that the heating system design by HDH data will probably overshoot the actual heating requirement. 3. The energy saving effect of night-time thermal curtain as well as estimated heating requirement is found to be sensitively related with weather condition: Thermal curtain adopted for simulation showed high effectiveness in energy saving which amounts to more than 50% of annual heating requirement. 4. The ventilation performances doting warm seasons are mainly influenced by air exchange rate even though there are some variations depending on greenhouse structural difference, weather and cropping conditions. For air exchanges above 1 volume per minute, the reduction rate of temperature rise on both types of considered greenhouse becomes modest with the additional increase of ventilation capacity. Therefore the desirable ventilation capacity is assumed to be 1 air change per minute, which is the recommended ventilation rate in common greenhouse. 5. In glass covered greenhouse with full production, under clear weather of 50% RH, and continuous 1 air change per minute, the temperature drop in 50% shaded greenhouse and pad & fan systemed greenhouse is 2.6$^{\circ}C$ and.6.1$^{\circ}C$ respectively. The temperature in control greenhouse under continuous air change at this time was 36.6$^{\circ}C$ which was 5.3$^{\circ}C$ above ambient temperature. As a result the greenhouse temperature can be maintained 3$^{\circ}C$ below ambient temperature. But when RH is 80%, it was impossible to drop greenhouse temperature below ambient temperature because possible temperature reduction by pad ||||&|||| fan system at this time is not more than 2.4$^{\circ}C$. 6. During 3 months of hot summer season if the greenhouse is assumed to be cooled only when greenhouse temperature rise above 27$^{\circ}C$, the relationship between RH of ambient air and greenhouse temperature drop($\Delta$T) was formulated as follows : $\Delta$T= -0.077RH+7.7 7. Time dependent cooling effects performed by operation of each or combination of ventilation, 50% shading, pad & fan of 80% efficiency, were continuously predicted for one typical summer day long. When the greenhouse was cooled only by 1 air change per minute, greenhouse air temperature was 5$^{\circ}C$ above outdoor temperature. Either method alone can not drop greenhouse air temperature below outdoor temperature even under the fully cropped situations. But when both systems were operated together, greenhouse air temperature can be controlled to about 2.0-2.3$^{\circ}C$ below ambient temperature. 8. When the cool water of 6.5-8.5$^{\circ}C$ was sprayed on greenhouse roof surface with the water flow rate of 1.3 liter/min per unit greenhouse floor area, greenhouse air temperature could be dropped down to 16.5-18.$0^{\circ}C$, whlch is about 1$0^{\circ}C$ below the ambient temperature of 26.5-28.$0^{\circ}C$ at that time. The most important thing in cooling greenhouse air effectively with water spray may be obtaining plenty of cool water source like ground water itself or cold water produced by heat-pump. Future work is focused on not only analyzing the feasibility of heat pump operation but also finding the relationships between greenhouse air temperature(T$_{g}$ ), spraying water temperature(T$_{w}$ ), water flow rate(Q), and ambient temperature(T$_{o}$).

  • PDF