• Title/Summary/Keyword: Relative Weighting

Search Result 129, Processing Time 0.026 seconds

Practical Validity of Weighting Methods : A Comparative Analysis Using Bootstrapping (부트스트랩핑을 이용한 가중치 결정방법의 실질적 타당성 비교)

  • Jeong, Ji-Ahn;Cho, Sung-Ku
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.26 no.1
    • /
    • pp.27-35
    • /
    • 2000
  • For a weighting method to be practically valid, it should produce weights which coincide with the relative importance of attributes perceived by the decision maker. In this paper, 'bootstrapping' is used to compare the practical validities of five weighting methods frequently used; the rank order centroid method, the rank reciprocal method, the rank sum method, the entropic method, and the geometric mean method. Bootstrapping refers to the procedure where the analysts allow the decision maker to make careful judgements on a series of similar cases, then infer statistically what weights he was implicitly using to arrive at the particular ranking. The weights produced by bootstrapping can therefore be regarded as well reflecting the decision maker's perceived relative importances. Bootstrapping and the five weighting methods were applied to a job selection problem. The results showed that both the rank order centroid method and the rank reciprocal method had higher level of practical validity than the other three methods, though a large difference could not be found either in the resulting weights or in the corresponding solutions.

  • PDF

Design Optimization of Axial Flow Fan Using Genetic Algorithm (유전자 알고리즘을 이용한 축류 송풍기 설계최적화)

  • Yoo, In-Tae;Ahn, Cheol-O;Lee, Sang-Hwan
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.397-403
    • /
    • 2003
  • In an attempt to solve multiobjective optimization problems, weighted sum method is most widely used for the advantage that a designer can consider the relative significance of each object functions by weight values but it can be highly sensitive to weight vector and occasionally yield a deviated optimum from the relative weighting values designer designated because the multiobjective function has the form of simple sum of the product of the weighting values and the object functions in traditional approach. To search the design solution well agree to the designer's weighting values, we proposed new multiobjective function which is the functional of each normalized objective functions and considered to find the design solution comparing the distance between the characteristic line and the ideal optimum. In this study, proposed multiobjective function was applied to design high efficiency and low noise axial flow fan and the result shows this approach will be effective for the case that the qualify of the design can be highly affected by the designer's subjectiveness represented as weighting values in multiobjective design optimization process.

  • PDF

Determination of the Frequency Weighting Curves for the Estimation of Discomfort by the Steering Wheel Vibration (조향휠 진동의 안락성 평가를 위한 주파수 가중치 곡선 결정)

  • 홍석인;장한기;김승한
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.1048-1052
    • /
    • 2003
  • This study aims to derive frequency weighting curves for the estimation of driver's discomfort by steering wheel vibration in the vertical and rotational direction with respect to a steering column. Subjective tests for the determination of equal sensation curves, inverse of frequency weighting curves, for the two kinds of vibrations were performed using the sinusoidal signals with reference amplitudes from 0.2m/s$^2$ to 0.4 m/s$^2$ in the frequency range from 5㎐ to 100㎐. Twelve subjects joined at the tests, and median values of the twelve judgments were used to determine the frequency weighting curves. Second experiment was followed to determine relative magnitude between the two frequency weighting curves by direct comparison of discomfort due to the two kinds of vibrations at 50㎐, which showed discomfort by the rotational vibration was 1.5 times of that by the vertical vibration.

  • PDF

Design Optimization of Axial Flow Fan Using Genetic Algorithm (유전자 알고리즘을 이용한 축류 송풍기 설계최적화)

  • Lee, Sang-Hwan;Ahn, Cheol-O
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.2 s.23
    • /
    • pp.7-13
    • /
    • 2004
  • In an attempt to solve multiobjective optimization problems, weighted sum method is most widely used for the advantage that a designer can consider the relative significance of each object functions by weight values but it can be highly sensitive to weight vector and occasionally yield a deviated optimum from the relative weighting values designer designated because the multiobjective function has the form of simple sum of the product of the weighting values and the object functions in traditional approach. To search the design solution agree well to the designer's weighting values, we proposed new multiobjective function which was the functional of each normalized objective functions and considered to find the design solution comparing the distance between the characteristic line and the ideal optimum. In this study, proposed multiobjective function was applied to design high efficiency and low noise axial flow fan and the result shows this approach is effective for the case that the quality of the design can be highly affected by the designer's subjectiveness represented as weighting values in multiobjective design optimization process.

A Study on the Weighting Factor for Integrative Space Evaluation in Residential Buildings - Based on Occupant Survey in Residential Buildings of USA - (주거공간에서의 통합적 실내평가를 위한 공간별 가중치 산정 프로세스에 관한 연구 - 미국 중서부 주거건물의 설문조사를 바탕으로 -)

  • Yoon, Sung-Hoon
    • Korean Institute of Interior Design Journal
    • /
    • v.20 no.5
    • /
    • pp.34-41
    • /
    • 2011
  • Today, residential building is considered of be one of the most important space of their quality of life and health. Residential buildings should provide comfortable environments to support the activities of their occupants. And good residential buildings are made by appropriately combining residential spaces, such as living room, master bedroom, bedroom, kitchen, restroom, and so on. These combinations in residential building are must be compatible with the activities of the occupants and their needs. The objective of this research is to investigate and analyze the relative importance and space priority between residential space in residential buildings depending on occupants' characteristics, such as, gender and age. Especially, this research is to find space weighting factors for integrative evaluation in residential buildings based on occupant survey. These weighting factors play an important role in determining the relative importance of various residential spaces for integrative residential space evaluation. And, the result from this research will help designers and researchers to find space planning strategies in residential building, and develop new integrative evaluation framework for improving residential quality from the occupants' point of view.

An Application of Case-Based Reasoning in Forecasting a Successful Implementation of Enterprise Resource Planning Systems : Focus on Small and Medium sized Enterprises Implementing ERP (성공적인 ERP 시스템 구축 예측을 위한 사례기반추론 응용 : ERP 시스템을 구현한 중소기업을 중심으로)

  • Lim Se-Hun
    • Journal of Information Technology Applications and Management
    • /
    • v.13 no.1
    • /
    • pp.77-94
    • /
    • 2006
  • Case-based Reasoning (CBR) is widely used in business and industry prediction. It is suitable to solve complex and unstructured business problems. Recently, the prediction accuracy of CBR has been enhanced by not only various machine learning algorithms such as genetic algorithms, relative weighting of Artificial Neural Network (ANN) input variable but also data mining technique such as feature selection, feature weighting, feature transformation, and instance selection As a result, CBR is even more widely used today in business area. In this study, we investigated the usefulness of the CBR method in forecasting success in implementing ERP systems. We used a CBR method based on the feature weighting technique to compare the performance of three different models : MDA (Multiple Discriminant Analysis), GECBR (GEneral CBR), FWCBR (CBR with Feature Weighting supported by Analytic Hierarchy Process). The study suggests that the FWCBR approach is a promising method for forecasting of successful ERP implementation in Small and Medium sized Enterprises.

  • PDF

A Study on the Effect of Weighting Matrix of Robot Vision Control Algorithm in Robot Point Placement Task (점 배치 작업 시 제시된 로봇 비젼 제어알고리즘의 가중행렬의 영향에 관한 연구)

  • Son, Jae-Kyung;Jang, Wan-Shik;Sung, Yoon-Gyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.9
    • /
    • pp.986-994
    • /
    • 2012
  • This paper is concerned with the application of the vision control algorithm with weighting matrix in robot point placement task. The proposed vision control algorithm involves four models, which are the robot kinematic model, vision system model, the parameter estimation scheme and robot joint angle estimation scheme. This proposed algorithm is to make the robot move actively, even if relative position between camera and robot, and camera's focal length are unknown. The parameter estimation scheme and joint angle estimation scheme in this proposed algorithm have form of nonlinear equation. In particular, the joint angle estimation model includes several restrictive conditions. For this study, the weighting matrix which gave various weighting near the target was applied to the parameter estimation scheme. Then, this study is to investigate how this change of the weighting matrix will affect the presented vision control algorithm. Finally, the effect of the weighting matrix of robot vision control algorithm is demonstrated experimentally by performing the robot point placement.

Strengthening sequence based on relative weightage of members in global damage for gravity load designed buildings

  • Niharika Talyan;Pradeep K. Ramancharla
    • Earthquakes and Structures
    • /
    • v.26 no.2
    • /
    • pp.131-147
    • /
    • 2024
  • Damage caused by an earthquake depends on not just the intensity of an earthquake but also the region-specific construction practices. Past earthquakes in Asian countries have highlighted inadequate construction practices, which caused huge life and property losses, indicating the severe need to strengthen existing structures. Strengthening activities shall be proposed as per the proposed weighting factors, first at the higher weighted members to increase the capacity of the building immediately and thereafter, the other members. Through this study on gravity load-designed (GLD) buildings, relative weights are assigned to each storey and exterior and interior columns within a storey based on their contribution to the energy dissipation capacity of the building. The numerical study is conducted on mid-rise archetype GLD buildings, i.e., 4, 6, 8, and 10 stories with variable storey heights, in the high seismic zones. Non-linear static analysis is performed to compute weights based on energy dissipation capacities. The results obtained are verified with the non-linear time history analysis of 4 GLD buildings. It was observed that exterior columns have higher weightage in the energy dissipation capacity of the building than interior columns up to a certain building height. The damage in stories is distributed in a convex to concave parabolic shape from bottom to top as building height increases, and the maxima location of the parabola shifts from bottom to middle stories. Relative weighting factors are assigned as per the damage contribution. And the sequence for strengthening activities is proposed as per the computed weighting factors in descending order for regular RCC buildings. Therefore, proposals made in the study would increase the efficacy of strengthening activities.

Determination of Frequency Weighting Curves for the Evaluation of Steering Wheel Vibration (체감 진동량 평가를 위한 조향 휠 진동의 주파수 가중치 결정)

  • 홍석인;장한기;김승한
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.165-172
    • /
    • 2003
  • This study aims to find frequency weighting curves for the evaluation of drivers' discomfort by vertical and rotational steering wheel vibration. Equal sensation curves, inverse of frequency weighting curves, were determined for the two kinds of vibrations respectively by using the sinusoidal signals with reference amplitudes from 0.2 to 0.4 m/s2 in the frequency range from 5 to 100 ㎐. Twelve subjects joined at the tests, and median values of the twelve judgments were used to determine the equal sensation curves. An experiment was followed to compare the relative sensation magnitude between the two kinds of equal sensation curves, which showed discomfort by the rotational vibration was 1.5 times of that by the vertical vibration at 50 ㎐.

Frame Selection, Hybrid, Modified Weighting Model Rank Method for Robust Text-independent Speaker Identification (강건한 문맥독립 화자식별을 위한 프레임 선택방법, 복합방법, 수정된 가중모델순위 방법)

  • 김민정;오세진;정호열;정현열
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.8
    • /
    • pp.735-743
    • /
    • 2002
  • In this paper, we propose three new text-independent speaker identification methods. At first, to exclude the frames not having enough features of speaker's vocal from calculation of the maximum likelihood, we propose the FS(Frame Selection) method. This approach selects the important frames by evaluating the difference between the biggest likelihood and the second in each frame, and uses only the frames in calculating the score of likelihood. Our secondly proposed, called the Hybrid, is a combined version of the FS and WMR(Weighting Model Rank). This method determines the claimed speaker using exponential function weights, instead of likelihood itself, only on the selected frames obtained from the FS method. The last proposed, called MWMR (Modified WMR), considers both original likelihood itself and its relative position, when the claimed speaker is determined. It is different from the WMR that take into account only the relative position of likelihood. Through the experiments of the speaker identification, we show that the all the proposed have higher identification rates than the ML. In addition, the Hybrid and MWMR have higher identification rate about 2% and about 3% than WMR, respectively.