• Title/Summary/Keyword: Relative Velocity Method

Search Result 332, Processing Time 0.024 seconds

Embedded type new in-situ soil stiffness assessment and monitoring technique

  • Namsun Kim;Jong-Sub Lee;Younggeun Yoo;Jinwook Kim;Junghee Park
    • Smart Structures and Systems
    • /
    • v.34 no.1
    • /
    • pp.33-40
    • /
    • 2024
  • We aimed to assess the evolution of small-strain stiffness and relative density in non-compacted embankment layers. We developed embedded type in-situ soil stiffness measurement devices for monitoring small-strain stiffness occurring after filling at a test site and conducted comprehensive laboratory compaction tests using an oedometer cell with a bender element. However, direct comparison is extremely difficult because the shear wave velocity measured in the field and laboratory depend on depth and effective stress, respectively. Therefore, we propose a method for establishing a relationship between effective stress and depth using a compressibility model. In this study, the shear wave velocity measured in the field was compared to the estimated shear wave velocity-depth profiles for completely dry and saturated conditions with different relative densities. The relative density under saturated soil conditions may vary between 50% and 90% and tends to be closer to 95%. Under dry soil conditions, the relative density of the embankment can vary from 30% to 70% and tends to approach 76%. For model validation, the relative density estimated from shear wave velocity-depth profiles was compared to that estimated from DCPI data. In other words, the results analyzed in the context of an effective stress-depth model enable the prediction of engineering properties such as the small-strain stiffness and relative density of embankment layers. This study demonstrates that physics-based data analyses successfully capture the relative density of non-compacted embankment layers.

A curtain traveling pluviator to reconstitute large scale sand specimens

  • Kazemi, Majid;Bolouri, Jafar B.
    • Geomechanics and Engineering
    • /
    • v.14 no.2
    • /
    • pp.131-139
    • /
    • 2018
  • The preparation of repeatable and uniformly reconstituted soil specimens up to the specified conditions is an essential requirement for the laboratory tests. In this study for large samples replication, the simultaneous usage of the traveling pluviation and curtain raining technique is used to develop a new method, called the curtain travelling pluviator (CTP). This simple and cost effective system is based on the air pluviation approach, whilst reducing the sample production time, can reproduce uniform samples with relative densities ranging from 25% to 96%. In order to investigate the resulting suitability and uniformity from the proposed method, a series of tests is performed. The effect of curtain traveling velocity, curtain width, drop height, and flow rate on the parameters of the sample is thoroughly investigated. Increase in the curtain velocity and drop height leads to the increase in relative density for the sand specimen. Increase in curtain width typically resulted in the reduction of relative density. Test results reveal that the terminal drop height for the sand specimen in this study is more than 500 mm. Relative density contour lines are presented that can be utilized in optimizing the drop height and curtain width parameters. Sample uniformity in the vertical and horizontal orientation is investigated through the sampling containers. Increasing relative density tends to result in the higher sample repeatability and uniformity.

Applicability of Relative Effective Porosity Model to Tracer Tests

  • Hwang, Hyeon-Tae;Lee, Gang-Geun;Suleiman, A.A.
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.341-345
    • /
    • 2004
  • An attempt has been made in this study to evaluate an applicability of Relative Effective Porosity Model (REPM) as a method for estimating saturated hydraulic conductivity (K$_{s}$) for homogeneous coarse, medium, and fine sands. The saturated hydraulic conductivities obtained from REPM are converted into average linear velocities using Darcy's Law and compared with the results from experimental tracer tests for homogeneous coarse, medium, and fine sand layer. Two types of tracer tests analyses, analytical solution using CXTFIT and moment methods, are performed to obtain reasonable linear velocity range for each layer. For the coarse and medium sands, the converted average linear velocity from REPM is in the velocity range obtained from tracer tests. However, small difference between the results from REPM and tracer tests is found for the fine sands. These results show that REPM gives reasonable estimates of saturated hydraulic conductivity.y.

  • PDF

Range and Velocity Estimation of the Object using a Moving Camera (움직이는 카메라를 이용한 목표물의 거리 및 속도 추정)

  • Byun, Sang-Hoon;Chwa, Dongkyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.12
    • /
    • pp.1737-1743
    • /
    • 2013
  • This paper proposes the range and velocity of the object estimation method using a moving camera. Structure and motion (SaM) estimation is to estimate the Euclidean geometry of the object as well as the relative motion between the camera and object. Unlike the previous works, the proposed estimation method can relax the camera and object motion constraints. To this end, we arrange the dynamics of moving camera-moving object relative motion model in an appropriate form such that the nonlinear observer can be employed for the SaM estimation. Through both simulations and experiments we have confirmed the validity of the proposed estimation algorithm.

Sound velocity effect on vibrating gas densimeter (음속이 진동형 기체 밀도 측정기에 미치는 영향)

  • Lee, W.G.;J.W. Chung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.1
    • /
    • pp.28-33
    • /
    • 1993
  • Measurements errors due to sound velocity effect on vibrating gas densimeters were described. Nitrogen was used to calibrate the densimeter, and oxygen was employed to determine a coefficient for the compensation of sound velocity effect. Sound velocity effects were shown with methane at temperatures of 7.97, 19.93 and 39.57 .deg. C, and pressures up to 3.6 Mpa. A relative error of about 1% was introduced when the nitrogen calibrated densimeter was used to measure densities of pure methane. A method of sound velocity effect compensation was able to reduce the error down to 0.1%.

  • PDF

S-wave Relative Travel Time Tomography for East Asia (동아시아 S파 상대 주시 토모그래피)

  • Cho, Seongheum;Chang, Sung-Joon
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.1
    • /
    • pp.18-24
    • /
    • 2017
  • We performed seismic imaging based on relative S-wave travel times to examine S-wave velocity of upper mantle structure beneath East Asia. We used teleseismic events recorded at 129 broadband stations of the Korea Institute of Geoscience and Mineral Resources (KIGAM), Korea Meteorological Administration (KMA), and National Research Institute for Earth Science and Disaster Prevention (NIED). Relative travel time residuals were obtained by a multi-channel cross-correlation method designed to automatically determine accurate relative phase arrival times. The resulting images show high-velocity anomalies along plate boundaries around the Japanese islands region. These anomalies may indicate subducting Pacific and Philippine Sea plates. On the other hand, a low-velocity anomaly is revealed beneath east of the Korean peninsula down to around 300 km depth, which is thought to be related to the formation of the Ulleung basin and the Ulleung island. Low-velocity anomalies revealed beneath the Jeju island may imply that the formation and volcanism of the Jeju island have been caused by magmatic sources from the deep mantle.

An Upper-Bound Analysis for Closed-Die Forging of the Involute Spur Gears with Circular Arc Fillet (원호필렛-인벌류트 스퍼어 기어의 밀폐단조에 관한 상계해석)

  • Choi, J.C.;Hur, K.D.;Kim, C.H.;Choi, Y.
    • Transactions of Materials Processing
    • /
    • v.3 no.1
    • /
    • pp.97-109
    • /
    • 1994
  • Closed-die forging of the spur gears with circular are fillet has been analyses by using the upper-bound method. A kinematically admissible velocity field has been developed, wherein, the tooth profile consists of the involute curve and the circular arc fillet. In the analysis, the deformation regions have been divided into eight zones. A constant frictional stress has been assumed on the contacting surfaces Utilizing the formulated velocity field, numerical calculations have been carried out to investigate the effects of various parameters, such as module, number of teeth, addendum modification coefficient and friction factor, on the relative forging pressure of spur gears. As the result of numerical calculations, the relative forging pressure does not change so much against the variation of module. On the other hand, the relative forging pressure increases at the final filling stage as the addendum modification coefficient increases.

  • PDF

Relative Motion Control Methodology Using the Minimum Relative Error Between Two Systems (두 시스템간의 편차 최소화를 적용한 상대적 동작제어 방법)

  • 김성권
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.12
    • /
    • pp.994-1000
    • /
    • 2003
  • A new relative motion control methodology for a following system to an independent leading system is proposed for controlling relative position, velocity, and tension etc. It is based on maintaining minimum relative error between two independent systems. The control command of the following system to a leading system is generated by adding the current command and the output of the relative error compensation. The proposed control method is implemented on the experimental equipment which is a wire winding-unwinding system to control the tension of the line. The results show the unwinding system(follower) following the independent motion of the winding system(leader) to control the constant tension of the line in order to keep the roller dancer in reference position. The relative motion control method proposed in this paper can be applied to high precision equipment for unwinding and winding fine wire, fine fiber, and tape etc.

Quantitative Analysis of Automotive Radar-based Perception Algorithm for Autonomous Driving (자율주행을 위한 레이더 기반 인지 알고리즘의 정량적 분석)

  • Lee, Hojoon;Chae, HeungSeok;Seo, Hotae;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.10 no.2
    • /
    • pp.29-35
    • /
    • 2018
  • This paper presents a quantitative evaluation method and result of moving vehicle perception using automotive radar. It is also important to analyze the accuracy of the perception algorithm quantitatively as well as to accurately percept nearby moving vehicles for safe and efficient autonomous driving. In this study, accuracy of the automotive radar-based perception algorithm which is developed based on interacting multiple model (IMM) has been verified via vehicle tests on real roads. In order to obtain experimental data for quantitative evaluation, Long Range Radar (LRR) has been mounted on the front of the ego vehicle and Short Range Radar (SRR) has been mounted on the rear side of both sides. RT-range has been installed on the ego vehicle and the target vehicle to simultaneously collect reference data on the states of the two vehicles. The experimental data is acquired in various relative positions and velocity, and the accuracy of the algorithm has been analyzed according to relative position and velocity. Quantitative analysis is conducted on relative position, relative heading angle, absolute velocity, and yaw rate of each vehicle.

Local Collision Avoidance of Multiple Robots Using Avoidability Measure and Relative Distance

  • Ko, Nak-Yong;Seo, Dong-Jin;Kim, Koung-Suk
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.132-144
    • /
    • 2004
  • This paper presents a new method driving multiple robots to their goal position without collision. To consider the movement of the robots in a work area, we adopt the concept of avoidability measure. The avoidability measure figures the degree of how easily a robot can avoid other robots considering the velocity of the robots. To implement the concept to avoid collision among multiple robots, relative distance between the robots is proposed. The relative distance is a virtual distance between robots indicating the threat of collision between the robots. Based on the relative distance, the method calculates repulsive force against a robot from the other robots. Also, attractive force toward the goal position is calculated in terms of the relative distance. These repulsive force and attractive force are added to form the driving force for robot motion. The proposed method is simulated for several cases. The results show that the proposed method steers robots to open space anticipating the approach of other robots. In contrast, since the usual potential field method initiates avoidance motion later than the proposed method, it sometimes fails preventing collision or causes hasty motion to avoid other robots. The proposed method works as a local collision-free motion coordination method in conjunction with higher level of task planning and path planning method for multiple robots to do a collaborative job.