• Title/Summary/Keyword: Relative Vehicle Speed

Search Result 83, Processing Time 0.027 seconds

Safety Improvement of Installation of "Hi-pass" System at Expressway Toll Gate (교통상충기법을 이용한 고속도로 하이패스차로 안전성 개선에 관한 연구 (서울외곽순환고속도로 본선영업소를 중심으로))

  • Yu, Bong-Seok;Lee, Su-Beom;Park, Wan-Yong;Park, Jun-Tae
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.4
    • /
    • pp.7-18
    • /
    • 2010
  • This study analyzed the relative vehicle speed and vehicle deceleration time caused by traffic conflicts using vehicle speed data at expressway toll gates and traffic conflict occurrence data. According to the analysis, the greater the relative vehicle speed is at the toll gate, the more sudden vehicle deceleration occurs due to traffic conflicts. In particular, a comparison study of cases in similar operating conditions presents a finding that usage of lanes influences traffic conflict occurrences as well as relative vehicle speed. With this finding, the study further conducted a quantitative analysis of the accident rates in relation to the relative vehicle speed between vehicles using a "Hi-Pass" lane and a regular lane at the toll gate. It indicates that when the relative vehicle speed is greater, the accident rate is higher due to sudden vehicle deceleration and shorter deceleration time. Furthermore, when the expressway entrance/exit point is closely located to a toll gate and the relative vehicle speed is great, a analysis at a traffic conflict shows a low value.

Safety Improvement of Centrally Installed "Hi-pass" Lane of Express Highway (고속도로 중앙하이패스차로 안전성 개선에 관한 연구 - 서울외곽순환고속도로 본선영업소를 중심으로 -)

  • Yoo, Bong-Seok;Lee, Soo-Beom;Park, Wan-Yong;Do, Hyun-Gu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1D
    • /
    • pp.1-10
    • /
    • 2010
  • Safety improvement has been a continuous challenge, especially at toll gate of express highway where traffic conflict often occurs due to frequent lane change by drivers of "Hi-pass" lane and regular "TCS" lane. As a part of research on safety at toll gate, this study videotaped traffic conflict data between vehicles using centrally located "Hi-pass" lane and regular "TCS" lane and analyzed accident risk. According to the correlation analysis of vehicle speed, relative vehicle speed, and sudden vehicle deceleration rate due to traffic conflict, when the relative vehicle speed between centrally located "Hi-pass" lane and regular "TCS" lane increases, sudden vehicle deceleration rate also increases. One of the findings is that centrally located "Hi-pass" lane at toll gate shows different location for traffic conflict, and frequency of traffic conflict and the relative vehicle speed was also different based on vehicle lane use. TA (Time to Accident) analysis shows that accident rate is high at toll gate where Hipass lane is installed in center lane, when the occurrence of sudden vehicle deceleration and deceleration time of vehicles rise for vehicles on "Hi-pass" lane. Furthermore, if the expressway entrance/exit point is closely located to toll gate, TA showed a low value. Thus, it is necessary to reduce the relative vehicle speed in order to improve safety. The Study presents reduction of the relevant vehicular speed and prevention of accidents at the centrally installed "Hi-pass" lane as an important strategy for safety improvement at toll gate.

Eco-Speed Control Strategy for Automated Electric Vehicles on Urban Road (도심환경에서의 전기자동차 친환경 자율주행 속도제어 전략)

  • Heo, Seulgi;Jeong, Yonghwan;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.10 no.1
    • /
    • pp.32-37
    • /
    • 2018
  • This paper proposes autonomous speed control strategy for an Electric Vehicle on urban road. SNU campus road is used to reperesent urban road situation. Motor efficiency of driving on campus circulation road can be improved by controlling velocity properly. Given information of campus road, especially slope of road, acceleration is selected from candidate, considering consumed power, human factor and driving time. To apply urban situation, preceding vehicle is also considered. With preceding vehicle, acceleration is defined according to clearance and relative velocity. Acceleration is bounded in normal range. Proposed acceleration control method is activated with proper velocity range for campus circulation road. With acceleration control, motor efficiency becomes better than driving with constant vehicle. To evaluate the performance of proposed acceleration controller, simulation study is conducted via MATLAB.

A Study on the Warning Characteristics of LDWS using Driver's Reaction Time and Vehicle Type (차량 종류 및 운전자 인지반응 시간을 이용한 LDWS 경고 특성에 관한 연구)

  • Park, Hwanseo;Chang, Kyungjin;Yoo, Songmin
    • Journal of Auto-vehicle Safety Association
    • /
    • v.8 no.1
    • /
    • pp.13-18
    • /
    • 2016
  • More than 80 percent of traffic accidents related with lane departure believed to be the result of crossing the lane due to either negligence or drowsiness of the driver. Lane-departure related accident in the highway usually involve high fatality. Even though LDWS is believed to prevent accident 25% and reduce fatalities by 15% respectively, its effectiveness in performance is yet to be confirmed in many aspects. In this study, the vehicle lateral locations relative to warning zone envelop (earliest and latest warning zone) defined in ISO standard, ECE and NHTSA regulations are compared with respect to various factors including delays, vehicle speed and vehicle heading angle with respect to the lane. Since LDWS is designed to be activated at the speed over 60 km/h, vehicle speed range for the study is set to be from 60 to 100 km/h. The vehicle heading angle (yaw angle) is set to be up to 5 degree away from the lane (abrupt lane change) considering standard for lane change test using double lane-change test specification. The TLC is calculated using factors like vehicle speed, yaw angle and reaction time. In addition, the effect of vehicle type and reaction time have been considered to assess LDWS safety.

Wind loads on a moving vehicle-bridge deck system by wind-tunnel model test

  • Li, Yongle;Hu, Peng;Xu, You-Lin;Zhang, Mingjin;Liao, Haili
    • Wind and Structures
    • /
    • v.19 no.2
    • /
    • pp.145-167
    • /
    • 2014
  • Wind-vehicle-bridge (WVB) interaction can be regarded as a coupled vibration system. Aerodynamic forces and moment on vehicles and bridge decks play an important role in the vibration analysis of the coupled WVB system. High-speed vehicle motion has certain effects on the aerodynamic characteristics of a vehicle-bridge system under crosswinds, but it is not taken into account in most previous studies. In this study, a new testing system with a moving vehicle model was developed to directly measure the aerodynamic forces and moment on the vehicle and bridge deck when the vehicle model moved on the bridge deck under crosswinds in a large wind tunnel. The testing system, with a total length of 18.0 m, consisted of three main parts: vehicle-bridge model system, motion system and signal measuring system. The wind speed, vehicle speed, test objects and relative position of the vehicle to the bridge deck could be easily altered for different test cases. The aerodynamic forces and moment on the moving vehicle and bridge deck were measured utilizing the new testing system. The effects of the vehicle speed, wind yaw angle, rail track position and vehicle type on the aerodynamic characteristics of the vehicle and bridge deck were investigated. In addition, a data processing method was proposed according to the characteristics of the dynamic testing signals to determine the variations of aerodynamic forces and moment on the moving vehicle and bridge deck. Three-car and single-car models were employed as the moving rail vehicle model and road vehicle model, respectively. The results indicate that the drag and lift coefficients of the vehicle tend to increase with the increase of the vehicle speed and the decrease of the resultant wind yaw angle and that the vehicle speed has more significant effect on the aerodynamic coefficients of the single-car model than on those of the three-car model. This study also reveals that the aerodynamic coefficients of the vehicle and bridge deck are strongly influenced by the rail track positions, while the aerodynamic coefficients of the bridge deck are insensitive to the vehicle speed or resultant wind yaw angle.

Experiments on the Noise Source Identification from a Moving Vehicle (주행하는 자동차 외부 소음원 측정에 관한 실험적 연구)

  • Hong, Suk-Ho;Choi, Jong-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.911-915
    • /
    • 2004
  • Recently, several experimental techniques for identifying the noise sources distributed over a moving vehicle are being developed and used in order to design a low noise vehicle. The beamforming method, which uses phase information between several microphones to localize the source position, is proved to be one of the promising techniques applicable even under complicated test environments. In this study a beamforming algorithm is developed and applied to measure the dominant noise sources on a passenger car moving at constant speed. Unlike the acoustic signals from a stationary noise source, the sound generated from a moving source is distorted due to the Doppler effects. The sound pressure are measured with an spiral array system composed of 26 microphones and a pair of photo sensors are used to measure the. vehicle speed. The information about the speed and relative position of the vehicle are used to eliminate the Doppler effects from the measured pressure signal by using a de-Dopplerization algorithm. The noise generated from a moving vehicle can be grouped in many ways, however, tire noise and the noise generated from the engine are distinguishable at the speeds being tested.

  • PDF

A Study on the Spacing Distrubution based on Relative Speeds between Vehicles -Focused on Uninterrupted Traffic Flow- (차량간 상대속도에 따른 차두거리 분포에 관한 연구 -연속류 교통흐름을 중심으로-)

  • Ma, Chang-Young;Yoon, Tae-Kwan;Kim, Byung-Kwan
    • International Journal of Highway Engineering
    • /
    • v.14 no.2
    • /
    • pp.93-99
    • /
    • 2012
  • This study analyzes traffic data which are collected by VDS(Vehicle Detection System) to research the relationship between spacing distribution and vehicles' relative speed. The collected data are relative speed between preceding and following vehicles, passing time and speed. They are also classified by lane and direction. For the result of the analysis, in the same platoon, we figure out that mean of spacing is 40m, which can be a value to determine section A to D. To compare spacing according to time interval, this study splits time intervals to peak hour and non-peak hour by peak hour traffic volume. In conclusion, vehicles in peak hour are in car following because most drive similar speed as preceding vehicle and they have relatively small spacing. On the other hand, non-peak hour's spacing between vehicles is bigger than that of peak hour. This implies driver's behaviors that the less spacing, the more aggressive and want to reduce their travel time in peak hour, whereas most drive easily in non-peak hour and recreational trip purpose because of less time pressure.

Detecting Lane Departure Based on GIS Using DGPS (DGPS를 이용한 GIS기반의 차선 이탈 검지 연구)

  • Moon, Sang-Chan;Lee, Soon-Geul;Kim, Jae-Jun;Kim, Byoung-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.4
    • /
    • pp.16-24
    • /
    • 2012
  • This paper proposes a method utilizing Differential Global Position System (DGPS) with Real-Time Kinematic (RTK) and pre-built Geo-graphic Information System (GIS) to detect lane departure of a vehicle. The position of a vehicle measured by DGPS with RTK has 18 cm-level accuracy. The preconditioned GIS data giving accurate position information of the traffic lanes is used to set up coordinate system and to enable fast calculation of the relative position of the vehicle within the traffic lanes. This relative position can be used for safe driving by preventing the vehicle from departing lane carelessly. The proposed system can be a key component in functions such as vehicle guidance, driver alert and assistance, and the smart highway that eventually enables autonomous driving supporting system. Experimental results show the ability of the system to meet the accuracy and robustness to detect lane departure of a vehicle at high speed.

Nearby Vehicle Detection in the Adjacent Lane using In-vehicle Front View Camera (차량용 전방 카메라를 이용한 근거리 옆 차선 차량 검출)

  • Baek, Yeul-Min;Lee, Gwang-Gook;Kim, Whoi-Yul
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.8
    • /
    • pp.996-1003
    • /
    • 2012
  • We present a nearby vehicle detection method in the adjacent lane using in-vehicle front view camera. Nearby vehicles in adjacent lanes show various appearances according to their relative positions to the host vehicle. Therefore, most conventional methods use motion information for detecting nearby vehicles in adjacent lanes. However, these methods can only detect overtaking vehicles which have faster speed than the host vehicle. To solve this problem, we use the feature of regions where nearby vehicle can appear. Consequently, our method cannot only detect nearby overtaking vehicles but also stationary and same speed vehicles in adjacent lanes. In our experiment, we validated our method through various whether, road conditions and real-time implementation.

LDWS Performance Study Based on the Vehicle Type (차량종류에 따른 LDWS 성능에 관한 연구)

  • Park, Hwan-Seo;Lee, Hong-Guk;Chang, Kyung-Jin;Yoo, Song-Min
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.6
    • /
    • pp.39-45
    • /
    • 2012
  • More than 80 percent of traffic accidents related with lane departure believed to be the result of crossing the lane due to either negligence or drowsiness of the driver. Lane-departure related accident in the highway usually involve high fatality. Even though LDWS is believed to prevent accident 25% and reduce fatalities by 15% respectively, its effectiveness in performance is yet to be confirmed in many aspects. In this study, the vehicle lateral locations relative to warning zone envelop (earliest and latest warning zone) defined in ISO standard, ECE and NHTSA regulations are compared with respect to various factors including delays, vehicle speed and vehicle heading angle with respect to the lane. Since LDWS is designed to be activated at the speed over 60 km/h, vehicle speed range for the study is set to be from 60 to 100 km/h. The vehicle heading angle (yaw angle) is set to be up to 5 degree away from the lane (abrupt lane change) considering standard for lane change test using double lane-change test specification. The TLC is calculated using factors like vehicle speed, yaw angle and reaction time. In addition, the effect of vehicle type has been considered to assess LDWS safety.