• Title/Summary/Keyword: Relative Uncertainty

Search Result 289, Processing Time 0.022 seconds

Uncertainty Evaluation of a Multi-axis Force/Moment Sensor and Its Application (다축 힘/모멘트센서의 불확도평가 및 응용에 관한 연구)

  • 김갑순
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.177-180
    • /
    • 2001
  • This paper describes the calibration method and the evaluation method of relative expanded uncertainty for a multi-axis force/moment sensor. This sensor should be calibrated to be use in the industry. Now, the confidence of the calibration result is expressed with interference error. But it is no inaccurate, because an interference error, besides, a reproducibility error of the sensor, a error of this six-axis force/moment sensor calibrator, and so on. Thus, in order to accurately evaluate the relative expanded uncertainty of it, the concept of the uncertainty should be induced, and these errors must be contained in the relative expanded uncertainty. In this paper, the calibration method is exhibited and the evaluation method of the relative expanded uncertainty is also exhibited. And, a six-axis force/moment sensor was calibrated and the relative expanded uncertainty was evaluated.

  • PDF

Uncertainty Evaluation of a multi-axis Force/Moment Sensor

  • Kim, Gab-Soon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.3
    • /
    • pp.5-11
    • /
    • 2002
  • This paper describes the methods for calibration and evaluation of the relative expanded uncertainty of a multi-axis force/moment sensor. In order to use the sensor in the industry, it should be calibrated and its relative expanded uncertainty should be also evaluated. At present, the confidence of the sensor is shown with only interference error. However, it is not accurate, because the calibrated multi-axis force/moment sensor has an interference error as well as a reproducibility error of the sensor, etc. In this paper, the methods fur calibration and for evaluation of the relative expanded uncertainty of a multi-axis force/moment sensor are newly proposed. Also, a six-axis force/moment sensor is calibrated with the proposed calibration method and the relative expanded uncertainty is evaluated using the proposed uncertainty evaluation method and the calibration results. It is thought that the methods fur calibration and evaluation of the uncertainty can be usually used for calibration and evaluation of the uncertainty of the multi-axis force/moment sensor.

Uncertainty Assessment: Relative versus Absolute Point Dose Measurement for Patient Specific Quality Assurance in EBRT

  • Mahmood, Talat;Ibrahim, Mounir;Aqeel, Muhammad
    • Progress in Medical Physics
    • /
    • v.28 no.3
    • /
    • pp.111-121
    • /
    • 2017
  • Verification of dose distribution is an essential part of ensuring the treatment planning system's (TPS) calculated dose will achieve the desired outcome in radiation therapy. Each measurement have uncertainty associated with it. It is desirable to reduce the measurement uncertainty. A best approach is to reduce the uncertainty associated with each step of the process to keep the total uncertainty under acceptable limits. Point dose patient specific quality assurance (QA) is recommended by American Association of Medical Physicists (AAPM) and European Society for Radiotherapy and Oncology (ESTRO) for all the complex radiation therapy treatment techniques. Relative and absolute point dose measurement methods are used to verify the TPS computed dose. Relative and absolute point dose measurement techniques have a number of steps to measure the point dose which includes chamber cross calibration, electrometer reading, chamber calibration coefficient, beam quality correction factor, reference conditions, influences quantities, machine stability, nominal calibration factor (for relative method) and absolute dose calibration of machine. Keeping these parameters in mind, the estimated relative percentage uncertainty associated with the absolute point dose measurement is 2.1% (k=1). On the other hand, the relative percentage uncertainty associated with the relative point dose verification method is estimated to 1.0% (k=1). To compare both point dose measurement methods, 13 head and neck (H&N) IMRT patients were selected. A point dose for each patient was measured with both methods. The average percentage difference between TPS computed dose and measured absolute relative point dose was 1.4% and 1% respectively. The results of this comparative study show that while choosing the relative or absolute point dose measurement technique, both techniques can produce similar results for H&N IMRT treatment plans. There is no statistically significant difference between both point dose verification methods based upon the t-test for comparing two means.

Quantification of Entire Change of Distributions Based on Normalized Metric Distance for Use in PSAs

  • Han, Seok-Jung;Chun, Moon-Hyun;Tak, Nam-Il
    • Nuclear Engineering and Technology
    • /
    • v.33 no.3
    • /
    • pp.270-282
    • /
    • 2001
  • A simple measure of uncertainty importance based on normalized metric distance to quantify the entire change of cumulative distribution functions (CDFs) has been developed for use in probability safety assessments (PSAs). The metric distance measure developed in this study reflects the relative impact of distributional changes of inputs on the change of an output distribution, white most of the existing uncertainty importance measures reflect the magnitude of relative contribution of input uncertainties to the output uncertainty. Normalization is made to make the metric distance measure a dimensionless quantity. The present measure has been evaluated analytically for various analytical distributions to examine its characteristics. To illustrate the applicability and strength of the present measure, two examples are provided. The first example is an application of the present measure to a typical problem of a system fault tree analysis and the second one is for a hypothetical non-linear model. Comparisons of the present result with those obtained by existing uncertainty importance measures show that the metric distance measure is a useful tool to express the measure of uncertainty importance in terms of the relative impact of distributional changes of inputs on the change of an output distribution.

  • PDF

Analysis on the Uncertainty Accompanied by PlV Velocity Measurements (PIV속도계측에 수반하는 UNCERTAINTY해석)

  • 이영호;최민선
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.71-74
    • /
    • 1991
  • Uncertainty analyses accompanied by the measurement of the velocity vectors in 3-D cavity flows are carried out. Twenty-one elemental errors are esimated or calculated according to the ANIS/ASME uncertainty analysis manual. Error components associater with the PIV(Particle Imaging Velocimetry) are reasonably small and the errors caused by the flow characteristics are fairly large, which confirm the reliability of the PIV measurement and also give good information to the planning phase of the experiment by discriminating the most critical parameter. The present study reveals that vector length expressed by pixels is the most influential. Calculated relative uncertainty for the all experimental conditions is ranging about 5-10% in terms of the representative velocity 0.5U. U is here the belt velocity on the cavity apparatus. Approximating equations to show the relative rss uncertainties are given and graphic representations are followed for the easier understanding of the uncertainty, existing in the velocity profiles of the cavity flow.

  • PDF

A Study on the Homogeneity and Stability for HCNG mixing gas (HCNG 혼합가스 균질성 및 안정성 연구)

  • Kim, Young-Gu;Kang, Seung-Gyu;Ahn, Jung-Jin
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.319-321
    • /
    • 2014
  • The homogeneity and the long term stability for HCNG(CNG composed of about 20 % hydrogen) have been studied. The homogeneity by using ANOVA shows that the HCNG mixing gas is homogeneous ; the relative uncertainty of homogeneity is 0.0375 %. The long term stability for HCNG mixing gas by using F-test and t-test shows that HCNG mixing gas is stable ; the relative uncertainty of the long term stability is 0.0682 % for seven months.

  • PDF

Measurement Uncertainty of Nicotine in Environmental Tobacco Smoke (ETS)

  • Lee, Jeong-Il;Lee, Cheol Min;Shim, In-Keun;Kim, Seong-Mi;Lee, Woo-Seok;Kim, Yoon-Shin
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.8
    • /
    • pp.2394-2398
    • /
    • 2013
  • Nicotine is the main component of environmental tobacco smoke, and its presence in indoor air is widely used as a secondhand-smoke indicator. Environmental tobacco smoke is a major source of indoor air pollution, but sufficient investigation of the uncertainty of its measurement, which mirrors the reliability of nicotine measurement, has not been performed. We calculated the uncertainty of measurement of indoor air nicotine concentration at low, medium, and high concentrations of 11.3798, 10.1977, $98.3768{\mu}g/m^3$, respectively, and we employed the Guide to the Expression of Uncertainty in Measurements (GUM), proposed by the International Organization for Standardization (ISO). The factors considered in determining the uncertainty were uncertainty of the calibration curve (calibration curve and repeated measurements), desorption efficiency, extraction volume, and sampling airflow (accuracy and acceptable limits of flowmeter). The measurement uncertainty was highest at low concentrations; the expanded measurement uncertainty is $0.9435{\mu}g/m^3$ and is represented as a relative uncertainty of 63.38%. At medium and high (concentrations, the relative uncertainty was 13.1% and 9.1%, respectively. The uncertainty of the calibration curve was largest for low indoor nicotine concentrations. To increase reliability of measurement in assessing the effect of secondhand smoke, measures such as increasing the sample injection rate ($1{\mu}L$ or more), increasing sampling volume to increase collected nicotine, and using gas chromatography-mass spectrometry (GC/MS) or GC/MS/MS, which has a lower quantitation threshold, rather than gas chromatography with nitrogen phosphorous detector, should be considered.

Simplified Estimation Method for Collective Uncertainty-Propagations of Hysteretic Energy Dissipating Device's Properties

  • Shin, Dong-Hyeon;Kim, Hyung-Joon
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1508-1524
    • /
    • 2018
  • Hysteretic energy dissipating devices (HEDDs) have been increasingly applied to building construction to improve the seismic performance. The seismic responses of such damped structures are significantly affected by HEDD's structural properties. An accurate investigation on the propagation of HEDD's structural properties is required for reasonable evaluation of the seismic performance of a structure. This study aims to develop simplified methods that can estimate the collective uncertainty-propagation to the seismic response of damped structures employing HEDDs. To achieve this, three- and six-story steel moment-resisting frames were selected and the propagations of the individual HEDD's property-uncertainties were evaluated when they are subjected to various levels of seismic demand. Based on the result of individual uncertainty-propagations, a simplified method is proposed to evaluate the variation of seismic response collectively propagated by HEDD's property-uncertainties and is verified by comparing with the exact collective uncertainty-propagation calculated using the Monte Carlo simulation method. The proposed method, called as a modified SRSS method in this study, is established from a conventional square root of the sum of the squares (SRSS) method with the relative contributions of the individual HEDD's property-uncertainty propagations. This study shows that the modified SRSS method provides a better estimation than the conventional SRSS method and can significantly reduce computational time with reasonable accuracy compared with the Monte Carlo simulation method.

The Influence of Disease Activity and Uncertainty on Anxiety and Depression in Patients with Ankylosing Spondylitis (강직성 척추염 환자의 질병활성도와 불확실성이 불안과 우울에 미치는 영향)

  • Lim, Jong-Mi;Cho, Ok-Hee
    • Journal of Korean Academic Society of Home Health Care Nursing
    • /
    • v.24 no.1
    • /
    • pp.61-68
    • /
    • 2017
  • Purpose: The purpose of this study was to understand how disease activity and uncertainty influence anxiety and depression in patients with ankylosing spondylitis Methods: Participants were 125 patients with ankylosing spondylitis who had attended the rheumatology division of a university hospital. A structured questionnaire was used to assess disease activity, uncertainty, anxiety, and depression. The data gathered were analyzed using t-tests, ANOVAs, Pearson correlation coefficients, and a multiple regression. Results: Differences were observed in anxiety based on job status, and in depression based on age, marriage, and job status. Uncertainty and disease activity predicted patients' anxiety and explained 40% of the variance in this measure, and the relative influence of uncertainty (${\beta}=.38$, p<.001) was larger than that of disease activity (${\beta}=.30$, p<.001). Furthermore, uncertainty and disease activity predicted depression and explained 36% of the variance therein, and the relative influence of uncertainty (${\beta}=.27$, p=.002) and disease activity (${\beta}=.27$, p=.003) was similar. Conclusion: This study confirmed that disease activity and uncertainty influenced anxiety and depression in patients with ankylosing spondylitis. Therefore, efforts to decrease anxiety and depression in patients with this condition must take into consideration disease activity when implementing nursing interventions and should include strategies to lower uncertainty.

Uncertainty decomposition in climate-change impact assessments: a Bayesian perspective

  • Ohn, Ilsang;Seo, Seung Beom;Kim, Seonghyeon;Kim, Young-Oh;Kim, Yongdai
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.1
    • /
    • pp.109-128
    • /
    • 2020
  • A climate-impact projection usually consists of several stages, and the uncertainty of the projection is known to be quite large. It is necessary to assess how much each stage contributed to the uncertainty. We call an uncertainty quantification method in which relative contribution of each stage can be evaluated as uncertainty decomposition. We propose a new Bayesian model for uncertainty decomposition in climate change impact assessments. The proposed Bayesian model can incorporate uncertainty of natural variability and utilize data in control period. We provide a simple and efficient Gibbs sampling algorithm using the auxiliary variable technique. We compare the proposed method with other existing uncertainty decomposition methods by analyzing streamflow data for Yongdam Dam basin located at Geum River in South Korea.