• Title/Summary/Keyword: Relative Thermal Control

Search Result 90, Processing Time 0.03 seconds

Study on Control of Thermal Environmental Factors for Improvement of Productivity of Laying Hens in Summer (여름철 산란계사 내 열환경인자 중 제어요소에 관한 연구)

  • Kim, Seong-Wan;Lee, Tae-Hoon;Cha, Gwang-Jun;Gutierrez, Winson M.;Chang, Hong-Hee
    • Journal of agriculture & life science
    • /
    • v.53 no.2
    • /
    • pp.121-129
    • /
    • 2019
  • This study carried out to determine control factors for the improvement of productivity of laying hens suffering heat stress during hot weather. A total of 48,451 ISA Brown layers were housed in a farm located in Gyeongsangnam-do, Republic of Korea. Five thermo-hydrometer loggers were installed inside the house to collect data of dry-bulb temperature and relative humidity. The experiment continued for 81 days when the summer season begins from 19th June to 7th September, 2018. This study analyzed the correlations among layers' production index and daily average, highest, and lowest temperature; daily average, highest, and lowest relative humidity; and daily average, minimum, and maximum THI. The result indicated that feed consumption, hen-day egg production, egg weight, and FCR decreased as the daily average, highest and lowest dry-bulb temperature and THI rise (p<0.01). On the other hand, water intake increased as the daily average, highest and lowest dry-bulb temperature and THI rise (p<0.001). The relative humidity was not considered to have direct correlations to the layers' production index (p>0.05). However, it was noticeable that the mortality did not have significant relations with daily average and highest temperature; THI; or daily average, highest and lowest relative humidity while it was relevant to the daily lowest temperature and THI (p<0.05). In conclusion, to enhance the productivity of laying hens in a hot climate, it is recommended that daily average, highest, and lowest dry-bulb temperature and THI are maintained as low as possible. Especially, the daily lowest temperature is needed to lower to 20℃, which is the lowest critical temperature for layers.

Effects of Concrete and Wood Building Environments on Pregnant Dams and Embryo-Fetal Development in Rats

  • Shin, In-Sik;Kim, Sung-Hwan;Lim, Jeong-Hyeon;Lee, Jong-Chan;Park, Na-Hyeong;Shin, Dong-Ho;Moon, Chang-Jong;Kim, Sung-Ho;Kim, Jong-Choon
    • Toxicological Research
    • /
    • v.25 no.4
    • /
    • pp.209-216
    • /
    • 2009
  • We have recently reported that the continuous exposure of rats to a concrete building environment under cool temperatures had adverse effects on general health parameters and embryo-fetal development. This study examined to compare the potential effects of concrete and wood building environments on pregnant dams and embryo-fetal development in rats. Groups of 10 mated females were exposed to polycarbonate (control), concrete, or wood cages from gestational days (GD) 0 to 20 under cool temperatures $(11.9\sim12.3^{\circ}C)$. All the females underwent a caesarean section on GD 20, and their fetuses were examined for any morphological abnormalities. The temperatures in the cages were similar in all groups but the relative humidity in the concrete and wood groups were higher than in the control group. The concentration of volatile organic compounds in the wood group was higher than in the control group. In the concrete group, maternal effects manifested as an increase in the incidence of clinical signs, a lower body weight, and a decrease in the thymus and ovary weights. Developmental effects included increased post-implantation loss and decreased litter size. Infrared thermal analysis showed that the skin temperature of the rats in the concrete group was lower than that in the control group. In contrast, there were no exposure-related adverse effects on the maternal and developmental parameters in the wood group. Overall, the exposure of pregnant rats to a concrete building environment under cool temperatures has adverse effects on the clinical signs, body weight, skin temperature, organ weight, and embryo-fetal development. On the other hand, exposure to a wood building environment does not have any adverse effects in rats.

Influence of Different Environmental Conditions on Cocoon Parameters and Their Effects on Reeling Performance of Bivoltine Hybrids of Silkworm, Bombyx mori. L.

  • Gowda B. Nanje;Reddy N. Mal
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.14 no.1
    • /
    • pp.15-21
    • /
    • 2007
  • Three newly authorized bivoltine silkworm hybrids namely, $CSR2{\times}CSR4$ (productive single hybrid), $(CSR6{\times}CSR26){\times}(CSR2{\times}CSR27)$ (productive double hybrid) and $CSR18{\times}CSR19$ (robust single hybrid) were chosen for the present study. These hybrids were subjected to different temperature and humidity treatments i.e., $25{\pm}$1^{\circ}C and RH $65{\pm}5%$ (control), $30{\pm}1^{\circ}C$, with combinations of low relative humidity (RH $65{\pm}5%$) and high RH ($85{\pm}5%$) at different stages during rearing and spinning of silkworm larvae. The larvae of after 3rd moult were subjected to different thermal and humidity stress till the assessment of cocoon traits. The comparative rearing and reeling performance clearly indicated that the deleterious effect of high temperature and high RH was more pronounced for the majority of traits such as cocoon uniformity, cocoon weight, shell weight, shell percentage, reelability, filament length, raw silk percentage raw silk recovery denier and waste percentage on silk weight than other temperature and RH treatments and this effect was almost similar for all three silkworm hybrids studied. The present investigation clearly indicate that the deleterious effect of high temperature and high RH was more pronounced on rearing and spinning of silkworm larvae than other temperature and RH treatments and similar effect was noticed for all the three silkworm hybrids studied. The cocoon characters can be improved by providing ideal environmental conditions even during spinning stage of larvae affected with high temperature and RH. The study also suggest that high temperature and low humidity has greater effect during rearing stage than spinning stage.

A study of baking properties depending on soybean flour and calcium added (발효 대두분 및 칼슘을 첨가한 혼합소맥분의 제빵적성에 관한 연구)

  • 김현혜;이정훈;윤미숙
    • Culinary science and hospitality research
    • /
    • v.7 no.3
    • /
    • pp.263-273
    • /
    • 2001
  • This study was to investigate the effect of 5~20% soybean flout(SBF) and/or 0.5~5% calcium on the quality of bread. pH of bread was increased with increasing an amount of SBF and calcium. pH of bread was higher than that of dough. The scores of specific volume and sensory evaluation for the bread quality were shown higher and increased its relative volume in the group of added both of 5~15%, SBF and 0.5~2%, calcium Endothermic peak for a thermal property of bread was increased with increasing the storage time of bread. The bread staling was progressed rapidly in control and calcium added groups only. with increasing an amount of SBF, L values of bread was decreased, but a and b values were increased. However, L, a and b values were shown no difference in the group of calcium added only. Therefore, the optimum blending ratios of SBF and calcium for the quality of bread were 5~10%, SBF and 0.5~1% calcium, respectively.

  • PDF

Air Temperature Decreasing Effects by Shading and Ventilation at Micro-scale Experiment Plots (소공간 실험구의 차광과 통풍에 의한 기온저감 효과)

  • Kim, Hyun-Cheol;Woo, Ji-Keun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.6
    • /
    • pp.39-48
    • /
    • 2010
  • The purpose of this study was to analyze air temperature decreasing effects by shading and ventilation at micro-scale experiment plots, especially focused on the Wet Bulb Globe Temperature (WBGT) in outdoor spaces. To monitor the time-serial changes of Dry-bulb Temperature (DT), Globe Temperature (GT) and Relative Humidity (RH) in the wind blocking and shading conditions, Two hexahedral steel frames were established on the open grass field, the dimension of each frame was 1.5m(W)${\times}$1.5m(L)${\times}$1.5m(H). Four vertical side of one frame was covered by transparent polyethylene film to prevent wind passing through (Wind break plot; WP). The top side of the other frame was covered with shading curtain which intercept 95% of solar light and energy (Shading plot; SP). And, Another vertical steel frame without any treatment preventing ventilation and sunlight was set up, which represents natural conditions (Control plot; CP). The major findings were as follows; 1. The average globe temperature (GT) was highest at WP showing $50.94^{\circ}C$ and lowest at SP showing $34.58^{\circ}C$. The GT of natural condition (SP) was $42.31^{\circ}C$ locating the midst between WP and SP. The difference of GT of each plot was about $8-16^{\circ}C$, which means the ventilation and shading has significant effect on decreasing the temperature. 2. WP showed the highest average dry-bulb temperature (DT) of $38.41^{\circ}C$ which apparently differ from SP and CP showing $31.94^{\circ}C$ and $33.15^{\circ}C$ respectively. The DT of SP and CP were nearly the same. 3. The average relative humidity (RH) was lowest at WP showing 15.21%, but SP and CP had similar RH 28.79%, 28.02% respectively. 4. The average of calculated WBGT were the highest at the WP ($27.61^{\circ}C$) and the lowest at the SP ($23.64^{\circ}C$). The CP ($25.49^{\circ}C$) was in the middle of the others. As summery, compared with natural condition (CP), the wind blocking increased about $2.11^{\circ}C$ WBGT, but the shading decreased about $1.84^{\circ}C$ WBGT. So It can be apparently said that the open space with much shading trees, sheltering furnitures and well-delivered wind corridor can reduce useless and even harmful energy for human outdoor activity considerably in outdoor spaces.

Comparison of Environment, Growth, and Management Performance of the Standard Cut Chrysanthemum 'Jinba' in Conventional and Smart Farms

  • Roh, Yong Seung;Yoo, Yong Kweon
    • Journal of People, Plants, and Environment
    • /
    • v.23 no.6
    • /
    • pp.655-665
    • /
    • 2020
  • Background and objective: This study was conducted to compare the cultivation environment, growth of cut flowers, and management performance of conventional farms and smart farms growing the standard cut chrysanthemum, 'Jinba'. Methods: Conventional and smart farms were selected, and facility information, cultivation environment, cut flower growth, and management performance were investigated. Results: The conventional and smart farms were located in Muan, Jeollanam-do, and conventional farming involved cultivating with soil culture in a plastic greenhouse, while the smart farm was cultivating with hydroponics in a plastic greenhouse. The conventional farm did not have sensors for environmental measurement such as light intensity and temperature and pH and EC sensors for fertigation, and all systems, including roof window, side window, thermal screen, and shading curtain, were operated manually. On the other hand, the smart farm was equipped with sensors for measuring the environment and nutrient solution, and was automatically controlled. The day and night mean temperatures, relative humidity, and solar radiation in the facilities of the conventional and the smart farm were managed similarly. But in the floral differentiation stage, the floral differentiation was delayed, as the night temperature of conventional farm was managed as low as 17.7℃ which was lower than smart farm. Accordingly, the harvest of cut flowers by the conventional farm was delayed to 35 days later than that of the smart farm. Also, soil moisture and EC of the conventional farm were unnecessarily kept higher than those of the smart farm in the early growth stage, and then were maintained relatively low during the period after floral differentiation, when a lot of water and nutrients were required. Therefore, growth of cut flower, cut flower length, number of leaves, flower diameter, and weight were poorer in the conventional farm than in the smart farm. In terms of management performance, yield and sales price were 10% and 38% higher for the smart farm than for the conventional farm, respectively. Also, the net income was 2,298 thousand won more for the smart farm than for the conventional farm. Conclusion: It was suggested that the improved growth of cut flowers and high management performance of the smart farm were due to precise environment management for growth by the automatic control and sensor.

Thermoelectric properties of unidirectionally solidified $Bi_{2}Te_{3}-PbBi_{4}Te_{7}$ eutectic alloys (일방향응고된 $Bi_{2}Te_{3}-PbBi_{4}Te_{7}$ 공정합금의 열전특성)

  • Park, Chang-Geun;Min, Byeong-Gyu;Lee, Dong-Hui
    • Korean Journal of Materials Research
    • /
    • v.5 no.2
    • /
    • pp.251-258
    • /
    • 1995
  • In an effort to increase the thermoelectric figure of merit by reducing the thermal conductivity, the unidirectionally solidified n-type (Bi, Pb)-Te based alloys which form a $Bi_{2}Te_{3}-PbBi_{4}Te_{7}$eutectic lamellar structure were investigated with the microstructural control at various solidification conditions. PbBi_{4}Te_{7}$ lamellae were grown on cleavage plane(0001) of $Bi_{2}Te_{3}$ and the interlamellar spacing decreased from 10.4 $\mu \textrm{m}$to 3.2$\mu \textrm{m}$ with growth velocity variation from 1.4 \times 10^{-4}$cm/sec to $8.3 \times 10^{-4}$cm/sec. Seebeck coefficient was constant, $\mid$$\alpha$$\mid$=29 $\mu$ V/K regardless of growth direction, growth velocity and temperature gradient. Electrical conductivity showed a tendency to decrease slightly with growth velocity and it parallel to growth direction was about three times as large as perpendicular direction. The figures of merit were varied differently from Seebeck coefficients and electrical conductivities depending on the growth direction, growth velocity and temperature gradients. They showed the relative increase in case of perpendicular direction compared with parallel to growth direction. It is believed to be due to the reduction of the thermal conductivity according to decrease of the interlamellar spacing.

  • PDF

Temperature Dependence on Dry Etching of $ZrO_2$ Thin Films in $Cl_2/BCl_3$/Ar Inductively Coupled Plasma ($Cl_2/BCl_3$/Ar 유도 결합 플라즈마에서 온도에 따른 $ZrO_2$ 박막의 식각)

  • Yang, Xue;Kim, Dong-Pyo;Lee, Cheol-In;Um, Doo-Seung;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.145-145
    • /
    • 2008
  • High-k materials have been paid much more attention for their characteristics with high permittivity to reduce the leakage current through the scaled gate oxide. Among the high-k materials, $ZrO_2$ is one of the most attractive ones combing such favorable properties as a high dielectric constant (k= 20 ~ 25), wide band gap (5 ~ 7 eV) as well as a close thermal expansion coefficient with Si that results in good thermal stability of the $ZrO_2$/Si structure. During the etching process, plasma etching has been widely used to define fine-line patterns, selectively remove materials over topography, planarize surfaces, and trip photoresist. About the high-k materials etching, the relation between the etch characteristics of high-k dielectric materials and plasma properties is required to be studied more to match standard processing procedure with low damaged removal process. Among several etching techniques, we chose the inductively coupled plasma (ICP) for high-density plasma, easy control of ion energy and flux, low ownership and simple structure. And the $BCl_3$ was included in the gas due to the effective extraction of oxygen in the form of $BCl_xO_y$ compounds. During the etching process, the wafer surface temperature is an important parameter, until now, there is less study on temperature parameter. In this study, the etch mechanism of $ZrO_2$ thin film was investigated in function of $Cl_2$ addition to $BCl_3$/Ar gas mixture ratio, RF power and DC-bias power based on substrate temperature increased from $10^{\circ}C$ to $80^{\circ}C$. The variations of relative volume densities for the particles were measured with optical emission spectroscopy (OES). The surface imagination was measured by scanning emission spectroscope (SEM). The chemical state of film was investigated using energy dispersive X-ray (EDX).

  • PDF

Gene Structure and Altered mRNA Expression of Metallothionein in Response to Metal Exposure and Thermal Stress in Miho Spine Loach Cobitis choii (Cobitidae; Cypriniformes) (미호종개 metallothionein 유전자의 구조 및 중금속 노출과 고온 자극에 대한 MT mRNA의 발현 특징 분석)

  • Lee, Sang-Yoon;Nam, Yoon-Kwon
    • Korean Journal of Ichthyology
    • /
    • v.23 no.1
    • /
    • pp.61-69
    • /
    • 2011
  • Gene and promoter structures of metallothionein(MT) from Miho spine loach (Cobitis choii; Cypriniformes) were characterized, and the transcriptional responses to experimental exposures to heavy metals and heat stress were examined. The C. choii metallothionein displayed well-conserved features of teleostean metallothioneins at gDNA, mRNA and amino acid levels. Bioinformatic analysis predicted that the C. choii MT regulatory region potentially possessed various motifs or elements targeted by various transcription factors associated with metal-coordinating regulation (e.g., metal transcription factor-1), immune responses (e.g., nuclear factor kappa B), and thermal modulations (e.g., heat shock factor). Acute heavy-metal exposures to 0.5 or $1.0\;{\mu}M$ of cadmium (Cd), copper (Cu), manganese (Mn), nickel (Ni) or zinc (Zn) showed that MT transcription was significantly stimulated by Cd (9.6-fold relative to non-exposed control) and Cu (10.4-fold), only moderately by Mn (2.4-fold), but hardly by Ni and Zn. Elevation of water temperature from $25^{\circ}C$ to $31^{\circ}C$ caused a rapid modulation of MT mRNAs toward upregulation to 9.5-fold; however, afterward the elevated mRNA level slightly decreased during further incubation at $31^{\circ}C$ for 6 h. Results from this study suggest that MT-based expression assay could be a useful basis for better understanding the metal- and/or heat-caused stresses in this endangered fish species.

Thermoelectric Properties of the Reaction Sintered n-type β-SiC (반응소결법으로 제조한 n형 β-SiC의 열전특성)

  • Pai, Chul-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.29-34
    • /
    • 2019
  • Silicon carbide is considered to be a potentially useful material for high-temperature electronic devices, as its large energy band gap and the p-type and/or n-type conduction can be controlled by impurity doping. Particularly, electric conductivity of porous n-type SiC semiconductors fabricated from ${\beta}-SiC$ powder at $2000^{\circ}C$ in $N_2$ atmosphere was comparable to or even larger than the reported values of SiC single crystals in the temperature region of $800^{\circ}C$ to $1000^{\circ}C$, while thermal conductivity was kept as low as 1/10 to 1/30 of that for a dense SiC ceramics. In this work, for the purpose of decreasing sintering temperature, it was attempted to fabricate porous reaction-sintered bodies at low temperatures ($1400-1600^{\circ}C$) by thermal decomposition of polycarbosilane (PCS) impregnated in n-type ${\beta}-SiC$ powder. The repetition of the impregnation and sintering process ($N_2$ atmosphere, $1600^{\circ}C$, 3h) resulted in only a slight increase in the relative density but in a great improvement in the Seebeck coefficient and electrical conductivity. However the power factor which reflects the thermoelectric conversion efficiency of the present work is 1 to 2 orders of magnitude lower than that of the porous SiC semiconductors fabricated by conventional sintering at high temperature, it can be stated that thermoelectric properties of SiC semiconductors fabricated by the present reaction-sintering process could be further improved by precise control of microstructure and carrier density.