• 제목/요약/키워드: Relative Position Estimation

검색결과 116건 처리시간 0.027초

Mathematical Analysis and Simulation Based Survey on Initial Pole Position Estimation of Surface Permanent Magnet Synchronous Motor

  • Kim, Tae-Woong;Wheeler, Patrick;Choi, Jae-Ho
    • Journal of Power Electronics
    • /
    • 제9권3호
    • /
    • pp.499-506
    • /
    • 2009
  • In this paper, the initial pole-position estimation of a surface (non-salient) permanent magnet synchronous motor is mathematically analyzed and surveyed on the basis of simulation analysis, and developed for accurate servo motor drive. This algorithm is well carried out under the full closed-loop position control without any pole sensors and is completely insensitive to any motor parameters. This estimation is based on the principle that the initial pole-position is simply calculated by the reverse trigonometric function using the two feedback currents in the full closed-loop position control. The proposed algorithm consists of the predefined reference position profile, the information of feedback currents, speed, and relative position, and the reverse trigonometric function for the initial-pole position estimation. Comparing with the existing researches, the mathematical analysis is introduced to get a more accurate initial pole-position of the surface permanent magnet motor under the closed-loop position control. It is found that the proposed algorithm can be easily applied in servo drive applications because it satisfies the following user's specifications; accuracy and moving distance.

항공영상에서 상대 위치 추정 알고리듬의 실시간 구현 (Real-Time Implementation of the Relative Position Estimation Algorithm Using the Aerial Image Sequence)

  • 박재홍;김관석;김인철;박래홍;이상욱
    • 대한전자공학회논문지SP
    • /
    • 제39권3호
    • /
    • pp.66-77
    • /
    • 2002
  • 본 논문에서는 TMS320C80 멀티미디어 MVP(multimedia video processor)를 이용한 항법 변수 추출의 구현 기법에 관하여 연구하였다. 특히, 항법 변수 추출 시스템의 실시간 구현에 중요한 역할을 하는 상대 위치 추정 알고리듬의 실시간 구현 방법에 관하여 고찰한다. 두 지점에서 취득된 영상을 이용하는 상대위치 추정 알고리듬을 근간으로 하여, 방대한 양의 계산량을 감축하면서 고정 소수점 프로세서에 적합한 고속 알고리듬을 개발한다. 그런 다음, MVP 내의 4개의 병렬 프로세서(PP; parallel processor)를 이용하여 병렬 처리할 수 있도록 알고리듬을 재구성한다. 그 결과, MVP를 이용한 항법 변수 추출 시스템은 초당 30프레임을 처리할 수 있음을 확인하여, 실시간 구현 조건을 만족시킴을 알 수 있었다.

Position Estimation of Mobile Robots using Multiple Active Sensors with Network

  • Jin, Tae-Seok
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제11권4호
    • /
    • pp.280-285
    • /
    • 2011
  • Recently, with the development of service robots and the concept of ubiquitous, the position estimation of mobile objects has received great interest. Some of the localization schemes are introduced, which provide the relative location of the moving objects subjected to accumulated errors. To implement a real time localization system, a new absolute position estimation method for a mobile robot in indoor environment is proposed. Design and implementation of the localization system comes from the usage of active beacon systems (based upon RFID technology). The active beacon system is composed of an RFID receiver and an ultra-sonic transmitter. The RFID receiver gets the synchronization signal from the mobile robot and the ultra-sonic transmitter sends out the traveling signal to be used for measuring the distance. Position of a mobile robot in a three dimensional space can be calculated basically from the distance information from three beacons and the absolute position information of the beacons themselves. In some case, the mobile robot can acquire the ultrasonic signals from only one or two beacons, due to the obstacles located along the moving path. In this paper, a position estimation scheme using fewer than three sensors is developed. Also, the extended Kalman filter algorithm is applied for the improvement of position estimation accuracy of the mobile robot.

Extended Kalman Filter방법을 이용한 자유주행 무인 방송차의 위치 평가 (Position Estimation of Free-Ranging AGV Systems Using the Extended Kalman Filter Technique)

  • Lee, Sang-Ryong
    • 대한전기학회논문지
    • /
    • 제38권12호
    • /
    • pp.971-982
    • /
    • 1989
  • An integrating position estimation algorithm has been developed for the navigation system of a free-ranging AGV system. The navigation system focused in this research work consists of redundant wheel encoders for the relative position measurement and a vision sensor for the absolute position measurement. A maximum likelihood method and an extended Kalman filter are implemented for enhancing the performance of the position estimator. The maximum likelihood estimator processes noisy, redundant wheel encoder measurements and yields efficient estimates for the AGV motion between each sampling interval. The extended Kalman filter fuses inharmonious positional data from the deadreckoner and the vision sensor and computes the optimal position estimate. The simulation results show that the proposed position estimator solves a generalized estimation problem for locating the vehicle accurately in space.

  • PDF

INS/GPS Integrated Smoothing Algorithm for Synthetic Aperture Radar Motion Compensation Using an Extended Kalman Filter with a Position Damping Loop

  • Song, Jin Woo;Park, Chan Gook
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권1호
    • /
    • pp.118-128
    • /
    • 2017
  • In this study, we propose a real time inertial navigation system/global positioning system (INS/GPS) integrated smoothing algorithm based on an extended Kalman filter (EKF) and a position damping loop (PDL) for synthetic aperture radar (SAR). Integrated navigation algorithms usually induce discontinuities due to error correction update by the Kalman filter, which are as detrimental to the performance of SAR as the relative position error. The proposed smoothing algorithm suppresses these discontinuities and also reduces the relative position error in real time. An EKF estimates the navigation errors and sensor biases, and all the errors except for the position error are corrected directly and instantly. A PDL activated during SAR operation period imposes damping effects on the position error estimates, where the estimated position error is corrected smoothly and gradually, which contributes to the real time smoothing and small relative position errors. The residual errors are re-estimated by the EKF to maintain the estimation performance and the stability of the overall loop. The performance improvements were confirmed by Monte Carlo simulations. The simulation results showed that the discontinuities were reduced by 99.8% and the relative position error by 48% compared with a conventional EKF without a smoothing loop, thereby satisfying the basic performance requirements for SAR operation. The proposed algorithm may be applicable to low cost SAR systems which use a conventional INS/GPS without changing their hardware configurations.

Experimental Study of Spacecraft Pose Estimation Algorithm Using Vision-based Sensor

  • Hyun, Jeonghoon;Eun, Youngho;Park, Sang-Young
    • Journal of Astronomy and Space Sciences
    • /
    • 제35권4호
    • /
    • pp.263-277
    • /
    • 2018
  • This paper presents a vision-based relative pose estimation algorithm and its validation through both numerical and hardware experiments. The algorithm and the hardware system were simultaneously designed considering actual experimental conditions. Two estimation techniques were utilized to estimate relative pose; one was a nonlinear least square method for initial estimation, and the other was an extended Kalman Filter for subsequent on-line estimation. A measurement model of the vision sensor and equations of motion including nonlinear perturbations were utilized in the estimation process. Numerical simulations were performed and analyzed for both the autonomous docking and formation flying scenarios. A configuration of LED-based beacons was designed to avoid measurement singularity, and its structural information was implemented in the estimation algorithm. The proposed algorithm was verified again in the experimental environment by using the Autonomous Spacecraft Test Environment for Rendezvous In proXimity (ASTERIX) facility. Additionally, a laser distance meter was added to the estimation algorithm to improve the relative position estimation accuracy. Throughout this study, the performance required for autonomous docking could be presented by confirming the change in estimation accuracy with respect to the level of measurement error. In addition, hardware experiments confirmed the effectiveness of the suggested algorithm and its applicability to actual tasks in the real world.

PMLSM의 개선된 초기 자극위치 추정방법 (Advanced Method for an Initial Pole Position Estimation of a PMLSM)

  • 이진우
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2004년도 전력전자학술대회 논문집(1)
    • /
    • pp.316-320
    • /
    • 2004
  • This paper presents an advanced method for an initial pole position estimation of a PMLSM (Permanent Magnet Linear Synchronous Motor) that has an incremental encoder for servo applications but does not have Hall sensors as a magnetic pole sensor. The proposed algorithm finds either of two zero force positions and then the correct d-axis by appropriately using the secant method as a numerical method. It only requires the tuned current controller and the relative position information and so it can be simply applicable to a rotary PMSM. The experimental results show the validity of the proposed method with respect to accurate pole position estimation under the minimal moving distance during estimation process.

  • PDF

위치인식 및 환경 가시화를 위한 이동 가능한 마커 위치 추정 연구 (A Study on Position Estimation of Movable Marker for Localization and Environment Visualization)

  • 양견모;곽동기;한종부;함제훈;서갑호
    • 로봇학회논문지
    • /
    • 제15권4호
    • /
    • pp.357-364
    • /
    • 2020
  • Indoor localization using an artificial marker plays a key role for a robot to be used in a service environment. A number of researchers have predefined the positions of markers and attached them to the positions in order to reduce the error of the localization method. However, it is practically impossible to attach a marker to the predetermined position accurately. In order to visualize the position of an object in the environment based on the marker attached to them, it is necessary to consider a change of marker's position or the addition of a marker because of moving the existed object or adding a new object. In this paper, we studied the method to estimate the artificial marker's global position for the visualization of environment. The system calculates the relative distance from a reference marker to others repeatedly to estimate the marker's position. When the marker's position is changed or new markers are added, our system can recognize the changed situation of the markers. To verify the proposed system, we attached 12 markers at regular intervals on the ceiling and compared the estimation result of the proposed method and the actual distance. In addition, we compared the estimation result when changing the position of an existing marker or adding a new marker.

Novel Method of ACO and Its Application to Rotor Position Estimation in a SRM under Normal and Faulty Conditions

  • Torkaman, Hossein;Afjei, Ebrahim;Babaee, Hossein;Yadegari, Peyman
    • Journal of Power Electronics
    • /
    • 제11권6호
    • /
    • pp.856-863
    • /
    • 2011
  • In this paper a novel method of the Ant Colony Optimization algorithm for rotor position estimation in Switched Reluctance Motors is presented. The data provided by the initial assumptions is one of the important aspects used to solve the problems relative to an Ant Colony algorithm. Considering the nature of a real ant colony, it was found that the ants have no primary data for deducing which is the shortest path in their initial iteration. They also do not have the ability to see the food sources at a distance. According to this point of view, a novel method is presented in which the rotor pole position relative to the corresponding stator pole in a switched reluctance motor is estimated with high accuracy using the active and inactive phase parameters. This new method gives acceptable results such as a desirable convergence together with an optimized and stable response. To the best knowledge of the authors, such an analysis has not been carried out previously.