• Title/Summary/Keyword: Relative Humidity

Search Result 2,552, Processing Time 0.028 seconds

Mean Size of Droplets Ejected from Humidifier and Distributions of Relative Humidity As Affected by Different Humidifying Methods in Graft-taking Enhancement System (가습 방식에 따른 가습입자의 평균 입경 및 활착촉진 시스템 내의 상대습도 분포)

  • 박현수;최유화;김용현
    • Journal of Bio-Environment Control
    • /
    • v.12 no.1
    • /
    • pp.12-16
    • /
    • 2003
  • The effect of humidifying methods on the mean size of droplets ejected from humidifier and distributions of relative humidity in a graft-taking enhancement system (GTES) was investigated. The mean sizes of droplets ejected from an ultrasonic humidifier and a steam humidifier with electrodes were 7.58$\pm$0.14 and 9.01$\pm$0.06 $\mu$m, respectively. Assuming that the particles ejected from humidifiers were mutually combined with distance, the mean diameter of droplets became larger as the distance apart from the outlet of humidifiers increased. When the relative humidity in GRS was controlled at 90% using the ultrasonic humidifiers, the average relative humidity at the height of 0.4, 1.1 and 1.8 m were 92.1$\pm$5.3, 90.9$\pm$5.6, and 89.7$\pm$6.8%, respectively. However, the average relative humidity using the steam humidifier with electrodes showed 93.4 $\pm$5.4, 90.7$\pm$5.9, and 89.3$\pm$7.0%, respectively. Therefore, it was concluded that humidification by ultrasonic humidifier would be appropriate for the uniform distribution of relative humidity in GTES.

Concentrations and environmental influences of airborne fungi at university laboratories, hospital diagnostic laboratories (대학실험실과 병원진단검사실에서의 부유진균 농도와 환경영향인자)

  • Hwang, Sung-Ho;Park, Dong-Uk;Ha, Kwon-Chul;Park, Hyun-Hee;Joo, Se-Ik;Yoon, Chung-Sik
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.20 no.4
    • /
    • pp.256-262
    • /
    • 2010
  • This study evaluated the airborne concentrations of fungi in university laboratories, hospital diagnostic laboratories in Seoul. The incubated fungi was identified by lactophenol cotton blue (LPCB) staining method. Variables such as types of ventilation, temperature and relative humidity were investigated to explain laboratory airborne fungal concentrations. A total of 97 air samples were collected from 10 facilities in two institutions. Aspergilus spp., including Aspergilus niger, Aspergillius flavos and Penicillium spp. were found as predominant species. Airborne fungal concentrations ranged from not detected (ND) to 1,890 CFU/$m^3$. Airborne fungal concentrations were high in general-ventilated facilities and in laboratories where relative humidity ( > 60 %) were high ( p < 0.001). Therefore, we suggest that relative humidity should be maintained to properly reduce the concentration of fungal in university and hospital laboratories.

Evaluation of thermal comfort and cooling loads for a multistory building

  • Lykartsis, Athanasios;B-Jahromi, Ali;Mylona, Anastasia
    • Advances in Energy Research
    • /
    • v.5 no.1
    • /
    • pp.65-77
    • /
    • 2017
  • The latest UK Climate Projections (UKCP09) show that mean daily temperatures will increase everywhere in the United Kingdom. This will significantly affect the thermal and energy performance of the current building stock. This study examines an institutional fully glazed building and looks into the changes in the cooling loads and thermal comfort of the occupants during the occupied hours of the non-heating period. Furthermore, it investigates the effect of relative humidity (RH) on thermal comfort. The Design Summer Year (DSY) 2003 for London Heathrow has been used as a baseline for this study and the DSY 2050s High Emissions scenario was used to examine the performance of the building under future weather conditions. Results show a 21% increase of the cooling loads between the two examined scenarios. Thermal comfort appears to be slightly improved during the months of May and September and marginally worsen during the summer months. Results of the simulation show that a relative humidity control at 40% can improve the thermal comfort for 53% of the occupied hours. A comparison of the thermal comfort performance during the hottest week of the year, shows that when the relative humidity control is applied thermal comfort performance of the 2050s is similar or better compared to the thermal comfort performance under the baseline.

Adsorption Characteristics of Short Grain Rough Rice (단립종 벼의 수분흡습특성)

  • 김종순;고학균;송대빈
    • Journal of Biosystems Engineering
    • /
    • v.23 no.5
    • /
    • pp.465-472
    • /
    • 1998
  • In this study short gain rough rice(Chu-cheong) with initial moisture content of around 12%(w.b.) was exposed to 3 levels of relative humidity(70, 80 and 90%) and 3 levels of temperature(20, 25 and 3$0^{\circ}C$) of the air, in order to evaluate the adsorption characteristics of rough rice and the rate of cracked kernels which will serve as the basic data when developing the quality adjusting equipment. The result showed that the moisture content of rough rice increased rapidly during the early stages of moisture adsorption like other grains, and at least 70% of the adsorption occurred within the first 24 hours of exposure to the humid environment. Adsorption rate was more related to relative humidity than the temperature of air stream, and the higher the relative humidity, the higher the adsorption rate. And the Page's equation predicted best the adsorption process of this study. Experimental results for the crack generation during the adsorption process showed that the higher the relative humidity the more the cracked kernels, and that the temperature had little effect. An empirical equation was developed to predict the crack ratio for the conditions of this study, and Nishiyama model predicted better the crack generation than Hoerl model.

  • PDF

The Changes of Meteorological Environment by Urban Development (대규모 도시 재개발에 따른 기상환경변화)

  • Kim, Geun-Hoi;Kim, Yeon-Hee;Koo, Hae-Jung;Kim, Kyu-Rang;Jung, Hyun-Sook
    • Atmosphere
    • /
    • v.24 no.1
    • /
    • pp.69-76
    • /
    • 2014
  • Urbanization affects the local thermal environment due to the large scale land use changes. To investigate the weather environment change of large scale urban redevelopment, 9 surface temperature and humidity observations were accomplished at Eunpyeong new town area. The observation period is from March 2007 to February 2010. In the center of development area, the air temperature has increased and relative humidity has decreased, by the changes of the land cover and building construction. In the area where the green zone is maintained, air temperature and relative humidity were not changed significantly. The air temperature and relative humidity for the other development observation stations is decreased and increased, respectively. The relative temperature difference between study area and a neighboring rural location was increased during observation periods. The difference is the highest during winter. The urban-rural minimum temperature difference was increased at development area, which means that urbanization affects increasing of minimum temperature in study area.

Study of the Periodic Ludwieg Tube Flow with Heat Addition (가열을 수반하는 Ludwieg Tube 유동에 대한 연구)

  • Baek, S.C.;Kwon, S.B.;Kim, H.D.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.450-455
    • /
    • 2001
  • The time-dependent behavior of nonequilibrium condensation of moist air through the Ludwieg tube is investigated with a computational fluid dynamics(CFD) method. The two-dimensional, compressible, Navier-Stokes equations, fully coupled with the condensate droplet growth equations, are numerically solved by a third-order MUSCL type TVD finite-difference scheme, with a second-order fractional time step. Baldwin-Lomax turbulence model is employed to close the governing equations. The computational results are compared with the previous experiments using the Ludwieg tube with a downstream diaphragm. The results clearly show that for an initial relative humidity below 30% there is no periodic oscillation of the condensation shock wave, but for an initial relative humidity over 40% the periodic excursions of the condensation shock occurs in the Ludwieg tube, and the frequency increases with the initial relative humidity. It is also found that total pressure loss due to nonequilibrium condensation in the Ludwieg tube should not be ignored even for a very low initial relative humidity, and the periodic excursions of the condensation shock wave are responsible for the total pressure loss.

  • PDF

Study of Moist Air Flow Through the Ludwieg Tube

  • Baek, Seung-Cheol;Kwon, Soon-Bum;Kim, Heuy-Dong;Toshiaki Setoguchi;Sigeru Matsuo;Raghu S. Raghunathan
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.2066-2077
    • /
    • 2003
  • The time-dependent behavior of unsteady condensation of moist air through the Ludwieg tube is investigated by using a computational fluid dynamics (CFD) work. The two-dimensional, compressible, Navier-Stokes equations, fully coupled with the condensate droplet growth equations, are numerically solved by a third-order MUSCL type TVD finite-difference scheme, with a second-order fractional time step. Baldwin-Lomax turbulence model is employed to close the governing equations. The predicted results are compared with the previous experiments using the Ludwieg tube with a diaphragm downstream. The present computations represent the experimental flows well. The time-dependent unsteady condensation characteristics are discussed based upon the present predicted results. The results obtained clearly show that for an initial relative humidity below 30% there is no periodic oscillation of the condensation shock wave, but for an initial relative humidity over 40% the periodic excursions of the condensation shock occurs in the Ludwieg tube, and the frequency increases with the initial relative humidity. It is also found that total pressure loss due to unsteady condensation in the Ludwieg tube should not be ignored even for a very low initial relative humidity and it results from the periodic excursions of the condensation shock wave.

Predicting residual compressive strength of self-compacted concrete under various temperatures and relative humidity conditions by artificial neural networks

  • Ashteyat, Ahmed M.;Ismeik, Muhannad
    • Computers and Concrete
    • /
    • v.21 no.1
    • /
    • pp.47-54
    • /
    • 2018
  • Artificial neural network models can be successfully used to simulate the complex behavior of many problems in civil engineering. As compared to conventional computational methods, this popular modeling technique is powerful when the relationship between system parameters is intrinsically nonlinear, or cannot be explicitly identified, as in the case of concrete behavior. In this investigation, an artificial neural network model was developed to assess the residual compressive strength of self-compacted concrete at elevated temperatures ($20-900^{\circ}C$) and various relative humidity conditions (28-99%). A total of 332 experimental datasets, collected from available literature, were used for model calibration and verification. Data used in model development incorporated concrete ingredients, filler and fiber types, and environmental conditions. Based on the feed-forward back propagation algorithm, systematic analyses were performed to improve the accuracy of prediction and determine the most appropriate network topology. Training, testing, and validation results indicated that residual compressive strength of self-compacted concrete, exposed to high temperatures and relative humidity levels, could be estimated precisely with the suggested model. As illustrated by statistical indices, the reliability between experimental and predicted results was excellent. With new ingredients and different environmental conditions, the proposed model is an efficient approach to estimate the residual compressive strength of self-compacted concrete as a substitute for sophisticated laboratory procedures.

Thin Layer Drying Model of Green Rice (청립의 박층건조모델)

  • Han, J.W.;Keum, D.H.;Kim, H.;Lee, S.E.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.5 s.118
    • /
    • pp.410-415
    • /
    • 2006
  • This study was performed to develop thin layer drying equations for green rice. Thin layer drying tests of green rice were conducted at three temperature levels of 30, 40, $50^{\circ}C$ and two relative humidity levels of 30, 50% respectively. The measured moisture ratio were fitted to the selected four drying models (Page, Thompson, Simplified diffusion and Lewis model) using stepwise multiple regression analysis. The overall drying rate increased as the drying air temperature and as relative humidity was increased, but the effect of temperature increase was dominant. Half response time (Moisture ratio=0.5) of drying was affected by both drying temperature and relative humidity Drying rate was mainly affected by relative humidity at drying temperature of $50^{\circ}C$. The results of comparing coefficients of determination and root mean square error of moisture ratio for four drying models showed the Page model was found to ft adequately to all drying test data.

Investigation of Relative Humidity and Storage Time of Blended Tobaccos on Total Blending Silo (순엽싸이로 상대습도 및 퇴적 시간 연구)

  • Yang Burm-Ho;Chung Han-Ju;Han Jung-Ho;Kim Yong-Ok;Rhee Moon-Soo
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.28 no.1
    • /
    • pp.31-35
    • /
    • 2006
  • In this study, the effects of the relative humidity and storage time of blended tobaccos at total blending silo on cut tobacco equilibrium moisture contents, leaf moisture contents and migration of casing materials of tobacco types were investigated. To maintain the cutting moisture content(21 $\pm$ 1 %), it is necessary to keep 75 % relative humidity at 28 $^{\circ}C$ at total blending silo. The moisture content of reconstituted tobacco sheet was changed from $13{\sim}14$ % to $19{\sim}21$ % within 2 h after preblending. The contents of glycerin and fructose of tobacco types followed by storage time after preblending were not changed significantly. From these results, it is suggested that 2 h storage time after preblending was sufficient to maintain physical properties of cut tobaccos and tobacco taste and fragrance.