• Title/Summary/Keyword: Relationship Strength

Search Result 2,257, Processing Time 0.038 seconds

The Effect of Transverse Abdominal Exercise for 3Weeks for Lumbar Muscle Strength and Pain Relief on Chronic Low Back Pain Patients (3주간의 복횡근 강화운동이 만성요통 환자의 요부근력과 통증완화에 미치는 영향)

  • Lee, Seungjun;Lee, Geoncheol;Bae, Wonsik;Jung, Hansin
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.1 no.3
    • /
    • pp.9-17
    • /
    • 2013
  • Purpose : The purpose of this study was to analyze the effects of transverse abdominal exercise on the change of chronic low back pain and lumbar muscle strength. Method : 18 chronic lumbago patients were transverse abdominal exercise for 3weeks. Result : 1. The strength of the lumbar extensor and flexor of the male subjects was increased significantly after abdominal exercise(p<0.05). 2. The strength of the lumbar extensor and flexor of the female subjects was increased significantly after abdominal exercise(p<0.05). 3. The study can confirm significant relationship between the lumbar muscle strength and lumbar pain before and after the exercise Conclusion : The study of could find the increase of the ability of the lumbar extensor and flexor of both male and female subjects suffering from chronic low back and pain using three-week transverse abdominal exercise. The study confirmed the general decrease of pain after the experiment.

Residence s Exposure to Nitrogen Dioxide and Indoor Air Characteristics (거주지역 실내공기 특성 및 이산화질소 노출에 관한 연구)

  • 양원호;배현주;정문호
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.2
    • /
    • pp.183-192
    • /
    • 2002
  • Indoor air quality is affected by source strength of pollutants, ventilation rate, decay rate, outdoor level and so on. Although technologies exist to measure these factors directly, direct measurements of all factors are impractical in most field studies. The purpose of this study was to develop an alternative methods to estimate these factors by multiple measurements. Daily indoor and outdoor NO$_2$concentrations for 21 days in 20 houses in summer and winter, Seoul. Using a mass balance model and linear regression analysis, penetration factor (ventilation divided by sum of air exchange rate and deposition constant) and source strength factor(emission rate divided by sum of air exchange rate and deposition constant) were calculated. Subsequently, the ventilation and source strength were estimated. During sampling period, geometric mean of natural ventilation was estimated to be 1.10$\pm$1.53 ACH, assuming a residential NO$_2$decay rate of 0.8 hr$^{-1}$ in summer. In winter, natural ventilation was 0.75$\pm$1.31 ACH. And mean source strengths in summer and winter were 14.8ppb/hr and 22.4ppb/hr, respectively. Although the method showed similar finding previous studies, the study did not measure ACH or the source strength of the house directly. As validation of natural ventilations, infiltrations were measured with $CO_2$tracer gas in 18 houses. Relationship between ventilation and infiltration was statistically correlated (Pearson r=0.63, p=0.02).

Nonlinear finite element modeling of FRP-wrapped UHPC columns

  • Guler, Soner;Copur, Alperen;Aydogan, Metin
    • Computers and Concrete
    • /
    • v.12 no.4
    • /
    • pp.413-429
    • /
    • 2013
  • The primary aim of this study is to develop a three dimensional finite element (FE) model to predict the axial stress-strain relationship and ultimate strength of the FRP-wrapped UHPC columns by comparing experimental results. The reliability of four selected confinement models and three design codes such as ACI-440, CSA-S806-02, and ISIS CANADA is also evaluated in terms of agreement with the experimental results. Totally 6 unconfined and 36 different types of the FRP-wrapped UHPC columns are tested under monotonic axial compression. The values of ultimate strengths of FRP-wrapped UHPC columns obtained from the experimental results are compared and verified with finite element (FE) analysis results and the design codes mentioned above. The concrete damage plasticity model (CDPM) in Abaqus is utilized to represent the confined behavior of the UHPC. The results indicate that agreement between the test results and the non-linear FE analysis results is highly satisfactory. The CSA-S806-02 design code is considered more reliable than the ACI-440 and the ISIS CANADA design codes to calculate the ultimate strength of the FRP-wrapped UHPC columns. None of the selected confinement models that are developed for FRP-wrapped low and normal strength concrete columns can safely predict the ultimate strength of FRP-wrapped UHPC columns.

Capacity and the moment-curvature relationship of high-strength concrete filled steel tube columns under eccentric loads

  • Lee, Seung-Jo
    • Steel and Composite Structures
    • /
    • v.7 no.2
    • /
    • pp.135-160
    • /
    • 2007
  • Recently, CFT column has been well-studied and reported on, because a CFT column has certain superior structural properties as well as good productivity, execution efficiency, and improved rigidity over existing columns. However, CFT column still has problems clearing the capacity evaluation between its steel tube member and high-strength concrete materials. Also, research on concrete has examined numerical values for high-strength concrete filled steel square tube columns (HCFT) to explain transformation performance (M-${\phi}$) when a short-column receives equal flexure-moment from axial stress. Moment-curvature formulas are proposed for HCFT columns based on analytic assumption described in this paper. This study investigated structural properties (capacity, curvature), through a series of experiments for HCFT with key parameters, such as strength of concrete mixed design (58.8 MPa), width-thickness ratio (D/t), buckling length to sectional width ratio (Lk/D) and concrete types (Zeolite, Fly-ash, Silica-fume) under eccentric loads. A comparative analysis executed for the AISC-LRFD, AIJ and Takanori Sato, etc. Design formulas to estimate the axial load (N)-moment (M)-curvature (${\phi}$) are proposed for HCFT columns based on tests results described in this paper.

Effect of Temperalure on Index Pmperties and Brazilian Tensile Strength of Rocks (온도변화가 암석의 기본물성과 압렬인장특성에 미치는 영향)

  • 이찬구;최원학;장천중;김지영;이지훈
    • The Journal of Engineering Geology
    • /
    • v.5 no.1
    • /
    • pp.21-29
    • /
    • 1995
  • Among the index properties of granite and andesite, the relation between porosity and water content is highly correlated, but specific gravity, porosity and water content have loW relation with P wave velocity and their relationship showed dispersed zone type. With raising the temperature, Brazilian tensile strength was not changed remarkably, but decreased near $100^{\circ}C$. After the strength increased at $150^{\circ}C$, it decreased near $200^{\circ}C$ in granite. In andesite, however, the strength was increased up to $200^{\circ}C$, and then decreased. The variations of P wave velocity at each temperature zone are similar to those of tensile strength.

  • PDF

Acoustic-Trawl Surveys for Demersal Fisheries Resources in the East China Sea (동지나해 저서어업자원의 조사연구)

  • 윤갑동
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.29 no.3
    • /
    • pp.183-190
    • /
    • 1993
  • A cooperative Korea-Japan investigation for the demersal fisheries resources of the East China Sea carried out by using the training ship Oshoro Maru belong to Hok-kaido University, Japan, during 1-8 November, 1991. The research vessel sampled 15 stations with demersal trawls on the East China Sea, and 1,364 nautical miles of track line were surveyed hydroacoustically. The hydroacoustic observations were taken with a scientific echo sounder operating at two frequencies of 25 kHz and 100 kHz, and a microcomputer-based echo integrator. Fish samples were collected by demersal trawling, and temperature, salinity and dissolved oxygen were measured with a CTD system. The target strength of fish school was estimated from the relationship between mean scattering strength and catches caught by demersal trawling. The results obtained can be summarized as follows: 1. The mean backscattering strength for 15 layers occupied by demersal trawls at 25 kHz ranged from -70.4 dB to -59.1 dB. Then the catch per one hour ranged from 8.2 to 587.5 kg/hour. 2. The mean backscattering strength for the entire layer between transducer and seabed in the survey area of the East China Sea at 25 kHz and 100 kHz were -68.0 dB and -73.1 dB, respectively. 3. The mean fish-school target strength per one kilogram at 25 kHz and 100 kHz were -28.3 dB/kg, and -30.4 dB/kg, respectively.

  • PDF

Influence of Mixing Conditions on the Strength of Solidified Sandy Soils with Cement (배합조건이 시멘트혼합 사질토의 강도에 미치는 영향)

  • Yoo, Chan;Chang, Pyung-Wuck
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.6
    • /
    • pp.135-142
    • /
    • 2001
  • Laboratory experiment was performed to evaluate the influence of mixing conditions to the strength of solidified sandy soils with cement. The major physical factors considered in this experiment were the fine particles content(<$\sharp200%$), cement content(%) and water-cement ratio, and unconfined compressive strength test was performed on the samples at 7 and 28 cured day. The results of tests shows that when the cement content is relatively low (7~10 percents) the fine content in the sandy soils is very important, but when cement content is high the water-cement ratio became more important. It was appeared that in the range of the cement content of 7~10 percents, about 20~30 percents of fine content to the total sample weight is the optimum condition to get the maximum strength. In the case of the cement content of 13 percents, the strength of sample was considerably affected by the water-cement ratio rather than the fine content. In this paper, empirical equations were also developed and evaluated to verify the relationship among three factors by the multi-regression analysis.

  • PDF

Nondestructive Test for Strength Estimation of Concrete Deteriorated by High Temperature (고온 열화한 콘크리트의 강도추정을 위한 비파괴검사)

  • Park, Seok-Kyun;Heo, Jae-Young;Lee, Won-Hong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.181-184
    • /
    • 2008
  • The concrete is relatively fireproof materials. However, long-term exposure to high temperatures in the concrete strength is a phenomenon that occurs in the rapid degradation. In such a case, even low-strength estimates concrete expression to the General Non-destructive inspection is not appropriate to use the estimate. To overcome this problem, various mix conditions of the concrete specimen under 23, 200, 400, 600, $800^{\circ}C$ to a temperature, the correlation relationship between the ultrasonic velocity and the strength of concrete specimen is investigated and analyzed. This analysis estimates the high-temperature strength of the damaged concrete expression Non-destructive inspection of the proposal.

  • PDF

A Study on the Early Evaluation of Concrete Strength by Hot Water Curing Method (콘크리트 강도(强度)의 조기판정(早期判定)에 관한 연구(研究))

  • Shin, Hyun Mook;Jeon, Chan Ki;Suh, Kwang Man
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.4
    • /
    • pp.61-71
    • /
    • 1987
  • Accelerated strength testing is a available method for quality control of concrete. This paper presents the improved hot water ($70^{\circ}C$) methods and discusses how these methods can be adapted for predicting 28 day strength. The strength results have been analyzed by statistical techniques and correlation between early and 28 day strength are showed by prediction line. The test results show that the methods proposed in this paper are usable to predict the potential quality of concrete with low variation and good relationship between two strengths.

  • PDF

The use of neural networks in concrete compressive strength estimation

  • Bilgehan, M.;Turgut, P.
    • Computers and Concrete
    • /
    • v.7 no.3
    • /
    • pp.271-283
    • /
    • 2010
  • Testing of ultrasonic pulse velocity (UPV) is one of the most popular and actual non-destructive techniques used in the estimation of the concrete properties in structures. In this paper, artificial neural network (ANN) approach has been proposed for the evaluation of relationship between concrete compressive strength, UPV, and density values by using the experimental data obtained from many cores taken from different reinforced concrete structures with different ages and unknown ratios of concrete mixtures. The presented approach enables to find practically concrete strengths in the reinforced concrete structures, whose records of concrete mixture ratios are not yet available. Thus, researchers can easily evaluate the compressive strength of concrete specimens by using UPV values. The method can be used in conditions including too many numbers of the structures and examinations to be done in restricted time duration. This method also contributes to a remarkable reduction of the computational time without any significant loss of accuracy. Statistic measures are used to evaluate the performance of the models. The comparison of the results clearly shows that the ANN approach can be used effectively to predict the compressive strength of concrete by using UPV and density data. In addition, the model architecture can be used as a non-destructive procedure for health monitoring of structural elements.