• Title/Summary/Keyword: Relational Reinforcement Learning

Search Result 3, Processing Time 0.022 seconds

Effective Utilization of Domain Knowledge for Relational Reinforcement Learning (관계형 강화 학습을 위한 도메인 지식의 효과적인 활용)

  • Kang, MinKyo;Kim, InCheol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.3
    • /
    • pp.141-148
    • /
    • 2022
  • Recently, reinforcement learning combined with deep neural network technology has achieved remarkable success in various fields such as board games such as Go and chess, computer games such as Atari and StartCraft, and robot object manipulation tasks. However, such deep reinforcement learning describes states, actions, and policies in vector representation. Therefore, the existing deep reinforcement learning has some limitations in generality and interpretability of the learned policy, and it is difficult to effectively incorporate domain knowledge into policy learning. On the other hand, dNL-RRL, a new relational reinforcement learning framework proposed to solve these problems, uses a kind of vector representation for sensor input data and lower-level motion control as in the existing deep reinforcement learning. However, for states, actions, and learned policies, It uses a relational representation with logic predicates and rules. In this paper, we present dNL-RRL-based policy learning for transportation mobile robots in a manufacturing environment. In particular, this study proposes a effective method to utilize the prior domain knowledge of human experts to improve the efficiency of relational reinforcement learning. Through various experiments, we demonstrate the performance improvement of the relational reinforcement learning by using domain knowledge as proposed in this paper.

Safety and Efficiency Learning for Multi-Robot Manufacturing Logistics Tasks (다중 로봇 제조 물류 작업을 위한 안전성과 효율성 학습)

  • Minkyo Kang;Incheol Kim
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.2
    • /
    • pp.225-232
    • /
    • 2023
  • With the recent increase of multiple robots cooperating in smart manufacturing logistics environments, it has become very important how to predict the safety and efficiency of the individual tasks and dynamically assign them to the best one of available robots. In this paper, we propose a novel task policy learner based on deep relational reinforcement learning for predicting the safety and efficiency of tasks in a multi-robot manufacturing logistics environment. To reduce learning complexity, the proposed system divides the entire safety/efficiency prediction process into two distinct steps: the policy parameter estimation and the rule-based policy inference. It also makes full use of domain-specific knowledge for policy rule learning. Through experiments conducted with virtual dynamic manufacturing logistics environments using NVIDIA's Isaac simulator, we show the effectiveness and superiority of the proposed system.

Using Prior Domain Knowledge for Efficient Relational Reinforcement Learning (효율적인 관계형 강화학습을 위한 사전 영역 지식의 활용)

  • Kang, Minkyo;Kim, Incheol
    • Annual Conference of KIPS
    • /
    • 2021.05a
    • /
    • pp.483-486
    • /
    • 2021
  • 기존의 심층 강화학습은 상태, 행동, 정책 등을 모두 벡터 형태로 표현하는 강화학습으로서, 학습된 정책의 일반성과 해석 가능성에 제한이 있고 영역 지식을 학습에 효과적으로 활용하기도 어렵다는 한계성이 있다. 이러한 문제점들을 해결하기 위해 제안된 새로운 관계형 강화학습 프레임워크인 dNL-RRL은 상태, 행동, 그리고 학습된 정책을 모두 논리 서술자와 규칙들로 표현할 수 있다. 본 논문에서는 dNL-RRL을 기초로 공장 내 운송용 모바일 로봇의 제어를 위한 행동 정책 학습을 수행하였으며, 학습의 효율성 향상을 위해 인간 전문가의 사전 영역 지식을 활용하는 방안들을 제안한다. 다양한 실험들을 통해, 본 논문에서 제안하는 영역 지식을 활용한 관계형 강화학습 방법의 학습 성능 개선 효과를 입증한다.