DOI QR코드

DOI QR Code

Using Prior Domain Knowledge for Efficient Relational Reinforcement Learning

효율적인 관계형 강화학습을 위한 사전 영역 지식의 활용

  • Kang, Minkyo (Department of Computer Science, Kyonggi University) ;
  • Kim, Incheol (Department of Computer Science, Kyonggi University)
  • 강민교 (경기대학교 컴퓨터과학과) ;
  • 김인철 (경기대학교 컴퓨터과학과)
  • Published : 2021.05.12

Abstract

기존의 심층 강화학습은 상태, 행동, 정책 등을 모두 벡터 형태로 표현하는 강화학습으로서, 학습된 정책의 일반성과 해석 가능성에 제한이 있고 영역 지식을 학습에 효과적으로 활용하기도 어렵다는 한계성이 있다. 이러한 문제점들을 해결하기 위해 제안된 새로운 관계형 강화학습 프레임워크인 dNL-RRL은 상태, 행동, 그리고 학습된 정책을 모두 논리 서술자와 규칙들로 표현할 수 있다. 본 논문에서는 dNL-RRL을 기초로 공장 내 운송용 모바일 로봇의 제어를 위한 행동 정책 학습을 수행하였으며, 학습의 효율성 향상을 위해 인간 전문가의 사전 영역 지식을 활용하는 방안들을 제안한다. 다양한 실험들을 통해, 본 논문에서 제안하는 영역 지식을 활용한 관계형 강화학습 방법의 학습 성능 개선 효과를 입증한다.

Keywords

Acknowledgement

본 연구는 정보통신기획평가원의 재원으로 정보통신방송 기술개발사업의 지원을 받아 수행한 연구 과제(클라우드에 연결된 개별 로봇 및 로봇그룹의 작업 계획 기술 개발, 2020-0-00096)입니다.