• 제목/요약/키워드: Reissner-Mindlin plate

검색결과 51건 처리시간 0.018초

Pseudospectral 해석법을 이용한 직사각 Reissner-Mindlin 평판의 동적 해석 (Application of Pseudospectral Method to the Dynamic Analysis of Rectangular Reissner-Mindlin Plate)

  • 승용호;이진희
    • 대한기계학회논문집A
    • /
    • 제24권6호
    • /
    • pp.1419-1426
    • /
    • 2000
  • A dynamic analysis of rectangular Reissner-Mindlin plate was carried out using pseudospectral method. The pseudospectral method is superior to the finite element method because of more rapid conver gence speed of approximate solutions. Especially, the improvement in accuracy of the pseudospectral method is remarkable. Numerical examples demonstrate the excellent performance and robustness of the pseudospectral method with respect to thickness ratio of rectangular Reissner-Mindlin plate. The natural frequencies of rectangular Reissner-Mindlin plate calculated with the pseudospectral method are more reliable than those calculated with other numerical methods.

The construction of multivariable Reissner-Mindlin plate elements based on B-spline wavelet on the interval

  • Zhang, Xingwu;Chen, Xuefeng;He, Zhengjia
    • Structural Engineering and Mechanics
    • /
    • 제38권6호
    • /
    • pp.733-751
    • /
    • 2011
  • In the present study, a new kind of multivariable Reissner-Mindlin plate elements with two kinds of variables based on B-spline wavelet on the interval (BSWI) is constructed to solve the static and vibration problems of a square Reissner-Mindlin plate, a skew Reissner-Mindlin plate, and a Reissner-Mindlin plate on an elastic foundation. Based on generalized variational principle, finite element formulations are derived from generalized potential energy functional. The two-dimensional tensor product BSWI is employed to form the shape functions and construct multivariable BSWI elements. The multivariable wavelet finite element method proposed here can improve the solving accuracy apparently because generalized stress and strain are interpolated separately. In addition, compared with commonly used Daubechies wavelet finite element method, BSWI has explicit expression and a very good approximation property which guarantee the satisfying results. The efficiency of the proposed multivariable Reissner-Mindlin plate elements are verified through some numerical examples in the end.

Topology optimization of multiphase elastic plates with Reissner-Mindlin plate theory

  • Banh, Thanh T.;Lee, Dongkyu;Lee, Jaehong;Kang, Joowon;Shin, Soomi
    • Smart Structures and Systems
    • /
    • 제22권3호
    • /
    • pp.249-257
    • /
    • 2018
  • This study contributes to evaluate multiphase topology optimization design of plate-like elastic structures with constant thickness and Reissner-Mindlin plate theory. Stiffness and adjoint sensitivity formulations linked to Reissner-Mindlin plate potential energy of bending and shear are derived in terms of multiphase design variables. Multiphase optimization problem is solved through alternative active-phase algorithm with Gauss-Seidel version as an optimization model of optimality criteria. Numerical examples verify efficiency and diversity of the present topology optimization method of Reissner-Mindlin elastic plates depending on multiphase and Poisson's ratio.

An assumed-stress finite element for static and free vibration analysis of Reissner-Mindlin plates

  • Darilmaz, Kutlu
    • Structural Engineering and Mechanics
    • /
    • 제19권2호
    • /
    • pp.199-215
    • /
    • 2005
  • An assumed stress quadrilateral thin/moderately thick plate element HQP4 based on the Mindlin/Reissner plate theory is proposed. The formulation is based on Hellinger-Reissner variational principle. Static and free vibration analyses of plates are carried out. Numerical examples are presented to show that the validity and efficiency of the present element for static and free vibration analysis of plates. Satisfactory accuracy for thin and moderately thick plates is obtained and it is free from shear locking for thin plate analysis.

Multiphase material topology optimization of Mindlin-Reissner plate with nonlinear variable thickness and Winkler foundation

  • Banh, Thanh T.;Nguyen, Xuan Q.;Herrmann, Michael;Filippou, Filip C.;Lee, Dongkyu
    • Steel and Composite Structures
    • /
    • 제35권1호
    • /
    • pp.129-145
    • /
    • 2020
  • In typical, structural topology optimization plays a significant role to both increase stiffness and save mass of structures in the resulting design. This study contributes to a new numerical approach of topologically optimal design of Mindlin-Reissner plates considering Winkler foundation and mathematical formulations of multi-directional variable thickness of the plate by using multi-materials. While achieving optimal multi-material topologies of the plate with multi-directional variable thickness, the weight information of structures in terms of effective utilization of the material at the appropriate thickness location may be provided for engineers and designers of structures. Besides, numerical techniques of the well-established mixed interpolation of tensorial components 4 element (MITC4) is utilized to overcome a well-known shear locking problem occurring to thin plate models. The well-founded mathematical formulation of topology optimization problem with variable thickness Mindlin-Reissner plate structures by using multiple materials is derived in detail as one of main achievements of this article. Numerical examples verify that variable thickness Mindlin-Reissner plates on Winkler foundation have a significant effect on topologically optimal multi-material design results.

Reissner-Mindlin 평판의 hp-Version 유한요소해석 (hp-Version of the Finite Element Analysis for Reissner-Mindlin Plates)

  • 우광성;이기덕
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1992년도 가을 학술발표회 논문집
    • /
    • pp.39-44
    • /
    • 1992
  • This paper is concerned with formulations of the hierarchical $C^{o}$-plate element on the basis of Reissner-Mindlin plate theory. On reason for the development of the aforementioned element is that it is still difficult to construct elements based on h-version concepts which are accurate and stable against the shear locking effects. An adaptive mesh refinement and selective p-distribution of the polynomial degree using hp-version of the finite element method we proposed to verify the superior convergence and algorithmic efficiency with the help of the clamped L-shaped plate problems.s.

  • PDF

Bending Analysis of Mindlin-Reissner Plates by the Element Free Galerkin Method with Penalty Technique

  • Park, Yoo-Jin;Kim, Seung-Jo
    • Journal of Mechanical Science and Technology
    • /
    • 제17권1호
    • /
    • pp.64-76
    • /
    • 2003
  • In this work, a new penalty formulation is proposed for the analysis of Mindlin-Reissner plates by using the element-free Galerkin method. A penalized weak form for the Mindlin-Reissner Plates is constructed through the exterior penalty method to enforce the essential boundary conditions of rotations as well as transverse displacements. In the numerical examples, some typical problems of Mindlin-Reissner plates are analyzed, and parametric studies on the order of integration and the size of influence domain are also carried out. The effect of the types of background cells on the accuracy of numerical solutions is observed and a proper type of background cell for obtaining optimal accuracy is suggested. Further, optimal order of integration and basis order of Moving Least Squares approximation are suggested to efficiently handle the irregularly distributed nodes through the triangular type of background cells. From the numerical tests, it is identified that unlike the finite element method, the proposed element-free Galerkin method with penalty technique gives highly accurate solution without shear locking in dealing with Mindlin-Reissner plates.

An efficient six-node plate bending hybrid/mixed element based on mindlin/reissner plate theory

  • Mei, Duan;Miyamoto, Yutaka;Iwasaki, Shoji;Deto, Hideaki;Zhou, Benkuan
    • Structural Engineering and Mechanics
    • /
    • 제5권1호
    • /
    • pp.69-83
    • /
    • 1997
  • A new efficient hybrid/mixed thin~moderately thick plate bending element with 6-node (HM6-14) is formulated based on the Reissner-Mindlin plate bending theory. The convergence of this element is proved by error estimate theories and verified by patch test respectively. Numerical studies on such an element as HM6-14 demonstrate that it has remarkable convergence, invariability to geometric distorted mesh situations, to axial rotations, and to node positions, and no "locking" phenomenon in thin plate limit. The present element is suitable to many kinds of shape and thin~moderately thick plate bending problems. Further, in comparison with original hybrid/mixed plate bending element HP4, the present element yields an improvement of solutions. Therefore, it is an efficient element and suitable for the development of adaptive multi-field finite element method (FEM).

Multi-material topology optimization of Reissner-Mindlin plates using MITC4

  • Banh, Thien Thanh;Lee, Dongkyu
    • Steel and Composite Structures
    • /
    • 제27권1호
    • /
    • pp.27-33
    • /
    • 2018
  • In this study, a mixed-interpolated tensorial component 4 nodes method (MITC4) is treated as a numerical analysis model for topology optimization using multiple materials assigned within Reissner-Mindlin plates. Multi-material optimal topology and shape are produced as alternative plate retrofit designs to provide reasonable material assignments based on stress distributions. Element density distribution contours of mixing multiple material densities are linked to Solid Isotropic Material with Penalization (SIMP) as a design model. Mathematical formulation of multi-material topology optimization problem solving minimum compliance is an alternating active-phase algorithm with the Gauss-Seidel version as an optimization model of optimality criteria. Numerical examples illustrate the reliability and accuracy of the present design method for multi-material topology optimization with Reissner-Mindlin plates using MITC4 elements and steel materials.

Discrete singular convolution method for bending analysis of Reissner/Mindlin plates using geometric transformation

  • Civalek, Omer;Emsen, Engin
    • Steel and Composite Structures
    • /
    • 제9권1호
    • /
    • pp.59-75
    • /
    • 2009
  • In this study, a simple approach for bending analysis of Reissner-Mindlin plates is presented using the four-node quadrilateral domain transformation based on discrete singular convolution. In the proposed approach, irregular physical domain is transformed into a rectangular domain by using the geometric coordinate transformation. The DSC procedures are then applied to discrete the governing equations and boundary conditions. The accuracy of the proposed method is verified by comparison with known solutions obtained by other numerical or analytical methods. Results for Reissner-Mindlin plates show a satisfactory agreement with the analytical and numerical solutions.