• Title/Summary/Keyword: Reinforcement of the safety

Search Result 773, Processing Time 0.033 seconds

A Study on the Prediction of Buried Rebar Thickness Using CNN Based on GPR Heatmap Image Data (GPR 히트맵 이미지 데이터 기반 CNN을 이용한 철근 두께 예측에 관한 연구)

  • Park, Sehwan;Kim, Juwon;Kim, Wonkyu;Kim, Hansun;Park, Seunghee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.66-71
    • /
    • 2019
  • In this paper, a study was conducted on the method of using GPR data to predict rebar thickness inside a facility. As shown in the cases of poor construction, such as the use of rebars below the domestic standard and the construction of reinforcement, information on rebar thickness can be found to be essential for precision safety diagnosis of structures. For this purpose, the B-scan data of GPR was obtained by gradually increasing the diameter of rebars by making specimen. Because the B-scan data of GPR is less visible, the data was converted into the heatmap image data through migration to increase the intuition of the data. In order to compare the results of application of commonly used B-scan data and heatmap data to CNN, this study extracted areas for rebars from B-scan and heatmap data respectively to build training and validation data, and applied CNN to the deployed data. As a result, better results were obtained for the heatmap data when compared with the B-scan data. This confirms that if GPR heatmap data are used, rebar thickness can be predicted with higher accuracy than when B-scan data is used, and the possibility of predicting rebar thickness inside a facility is verified.

Deep learning algorithm of concrete spalling detection using focal loss and data augmentation (Focal loss와 데이터 증강 기법을 이용한 콘크리트 박락 탐지 심층 신경망 알고리즘)

  • Shim, Seungbo;Choi, Sang-Il;Kong, Suk-Min;Lee, Seong-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.4
    • /
    • pp.253-263
    • /
    • 2021
  • Concrete structures are damaged by aging and external environmental factors. This type of damage is to appear in the form of cracks, to proceed in the form of spalling. Such concrete damage can act as the main cause of reducing the original design bearing capacity of the structure, and negatively affect the stability of the structure. If such damage continues, it may lead to a safety accident in the future, thus proper repair and reinforcement are required. To this end, an accurate and objective condition inspection of the structure must be performed, and for this inspection, a sensor technology capable of detecting damage area is required. For this reason, we propose a deep learning-based image processing algorithm that can detect spalling. To develop this, 298 spalling images were obtained, of which 253 images were used for training, and the remaining 45 images were used for testing. In addition, an improved loss function and data augmentation technique were applied to improve the detection performance. As a result, the detection performance of concrete spalling showed a mean intersection over union of 80.19%. In conclusion, we developed an algorithm to detect concrete spalling through a deep learning-based image processing technique, with an improved loss function and data augmentation technique. This technology is expected to be utilized for accurate inspection and diagnosis of structures in the future.

Damage Analysis of the Bridge Structure Caused by Fire Outbreak (화재로 인한 교량구조의 손상 분석)

  • Lee, Hak-Sool;Yang, Sung-Ryong
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.4
    • /
    • pp.479-492
    • /
    • 2019
  • Purpose: The purpose of this study is to accurately analyze the damage of bridges in order to determine whether fire bridges can be used continuously or to provide information on maintenance augmentation data. Method: XRD, SEM and EDS analyzes of concrete were carried out to estimate the fire temperature transferred to the structure, and analyzed by depth and area from PSCI beam and bottom plate concrete surface. Results: Test results G12,11 for the fire zone concrete were confirmed to be affected by heat up to depth of 60mm and the temperature of the hydrothermal heat was above 1000℃. Also, the girder G10,9,8 was relatively weakly damaged compared to G12,11, and the degree of damage was confirmed to be affected by heat up to a depth of 40 mm. Conclusion: Based on the analyzed data, it is considered that if the repair / reinforcement and periodic inspection are carried out, the bridge can secure sufficient safety even considering the damage caused by the fire.

Shear Strength of SFRC Deep Beam with High Strength Headed Reinforcing Tensile Bars (고강도 확대머리 인장철근을 가지는 SFRC 깊은 보의 전단강도)

  • Kim, Young-Rok;Lee, Chang-Yong;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.5
    • /
    • pp.111-117
    • /
    • 2019
  • Shear experiments were carried out to evaluate shear performance of SFRC deep beams with end-anchorage of SD600 high strength headed reinforcing tensile bars. The experimental variables include the end-anchorage methods of tensile bars (headed bar, straight bar), the end-anchorage lengths, and the presence of shear reinforcement. Specimens with a shear span ratio of 1 showed a pattern of the shear compression failure with the slope cracks progressed after the initial bending crack occurred. Specimens with end-anchorage of headed bars (H-specimens) showed a larger shear strengths of 5.6% to 22.4% compared to straight bars (NH-specimens). For H-specimens, bearing stress reached 0.9 to 17.2% of the total stress of tensile bars up to 75% of the maximum load, and reached 22.4% to 46%. This shows that the anchorage strength due to the bearing stress of headed bars has a significant effect on shear strength. The experimental shear strength was 2.68 to 4.65 times the theoretical shear strength by the practical method, and the practical method was evaluated as the safety side.

Behaviour of Ground Anchor According to Period Characteristic of Seismic Load Using Numerical Analysis (수치해석을 통한 지진하중의 주기특성에 따른 그라운드 앵커의 거동)

  • Oh, Dong-Wook;Jung, Hyuk-Sang;Yoon, Hwan-Hee;Lee, Yong-Joo
    • Tunnel and Underground Space
    • /
    • v.28 no.6
    • /
    • pp.635-650
    • /
    • 2018
  • Many people have been recognized that the Korean Peninsula is no longer safe area from the earthquake by the recent earthquakes occurred in the country. The earthquakes that occurred at Pohang and Gyeongju appeared differently from them considered in the seismic design and researches on the seismic design method have been also conducted by many researchers. Studies on seismic loads are mainly focused on existing superstructures, and research involving them has been actively carried out in reality. However, paper regarding structural stability of reinforcement from seismic load such as soil-nails, rock-bolts, ground anchors which were constructed to ensure stability of serviced structure have been published rarely. In this study, ground anchor been effected by static load and seismic load which is settled in the weathered rock is analyzed. Results for static load are obtained from field test and seismic load is from numerical analysis. In this study, the behavioral characteristics of the ground anchor were analyzed by numerical analysis in case of seismic loading based on the result of the in-situ tensile test of the ground anchor settled weathered rock. As a result, settlement of concrete block due to application of tension force for ground anchor occurred as well as following loss of axial force for ground anchor. Also, as bond length and period of seismic load are longer, increasement of displacement is greater.

A Study on Protection Depending on Mesh Size of Expanded Metal for Slope Reinforcement (사면보강용 Expanded Metal 격자크기에 따른 인발 특성 연구)

  • Ji, Younghwan;Kim, Kihwan;Kim, Sungho;Hwang, Yeongcheol;Lee, Seungho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.12
    • /
    • pp.47-56
    • /
    • 2010
  • The construction of new roads and the consistent extension of already-existing roads or the line-shape revision of those roads are increased with the governmental investment to SOC facilities currently. Accordingly, the road cut slopes are in the trend of rapidly increasing. As the road slope has increased, a lot of human and property damages has entailed consequently and in the local case, numerous studies have carried out aiming at minimizing this damages caused by the rockfall and landslide. In general, standard falling rock prevention facility has employed for most of the local road slope based on "Guide for Installation and Management of Road Safety Facilities" published by MLTM(the Ministry of Land, Transport, and Maritime Affairs) but profound doubt has raised as to whether this rockfall prevention facility would function properly enough to prevent rockfall efficiently without any damages in case of actual occurrence of rockfall. In addition, it is a reality that in most cases, such work is relied on overseas technology as a whole as the local technical level is low and in case of rockfall prevention net, it is judged that a study on rockfall prevention net that is able to endure more powerful rockfall energy is required as the problem including net bursting is taken place as a result of enough bearing force being failed to be demonstrated due to its partial weak point(not uniformly made). Under this background, in this study, three kinds of model depending on mesh size of expanded metal that is considered to have an adoptability as rockfall prevention net, as target are selected and characteristics depending on mesh size of expanded metal is intended to be researched through a pull-out test performance by using pull-out test equipment rockfall prevention net.

Variation of Earth Pressure Acting on Cut-and-Cover Tunnel Lining with Settlement of Backfill (되메움토의 침하에 따른 개착식 터널 라이닝에 작용하는 토압의 변화)

  • Bautista F.E.;Park Lee-Keun;Im Jong-Chul;Lee Young-Nam
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.6
    • /
    • pp.27-40
    • /
    • 2006
  • Damage of cut-and-cover tunnel lining can be attributed to physical and mechanical factors. Physical factors include material property, reinforcement corrosion, etc. while mechanical factors include underground water pressure, vehicle loads, etc. This study is limited to the modeling of rigid circular cut and cover tunnel constructed at a depth of $1.0{\sim}1.5D$ in loose sandy ground and subjected to a vibration frequency of 100 Hz. In this study, only damages due to mechanical factors in the form of additional loads were considered. Among the different types of additional, excessive earth pressure acting on the cut-and-cover tunnel lining is considered as one of the major factors that induce deformation and damage of tunnels after the construction is completed. Excessive earth pressure may be attributed to insufficient compaction, consolidation due to self-weight of backfill soil, precipitation and vibration caused by traffic. Laboratory tunnel model tests were performed in order to determine the earth pressure acting on the tunnel lining and to investigate the applicability of existing earth pressure formulas. Based on the difference in the monitored and computed earth pressure, a factor of safety was recommended. Soil deformation mechanism around the tunnel was also presented using the picture analysis method.

A Study on the Basic Geometry Analysis of Abandoned Underground Mine Tunnels in Korea and Advanced Measuring-Analysis Technology for Underground Mine Cavities (한국의 폐광산 지하 채굴갱도 기초형상 분석 및 개선된 광산 지하공동 측정·분석 기술 연구)

  • Kim, Soo-Lo;Park, Sung-Bin;Choi, Byung-Hee;Yun, Jung-Mann;Jeong, Gyo-Cheol
    • Tunnel and Underground Space
    • /
    • v.26 no.6
    • /
    • pp.455-465
    • /
    • 2016
  • The collapse of underground mine development void for mineral resources can cause the subsidence of ground surface. In order to prevent the subsidence of ground, data such as maps or pictures of past mining site is important information for current mine reclamation works. In particular, mine subsidence management was based on mining maps and pictures. The process of the mining area surveys, safety evaluation, and ground reinforcement are normally possible with information such as maps and pictures in past mining. During the Japanese colonial period and 1960's, a lot of mines were developed in Korea indiscriminately. However, mining information at that time is limited to use. In the future, mining information will become even more rare. MIRECO intends to establish a realistic alternative solution. In this study, the basic numerical information of developed mine tunnels in Korea is statistically reviewed, and advanced underground cavity measuring technology was studied. 4,473 mine tunnel opening data of 1,784 abandoned mines in korea were collected and sorted. As a result of the analysis, the average value of small mine tunnel openings in Korea was 1.982 m in height and 1.959 m in width. The mean value of shape factor was analyzed as 0.485. The summary of these numerical mine data will be helpful for understanding and researching Korean abandoned mines. Therefore, the development of measurement technology for abandoned mine cavities and tunnels is expected to facilitate more effective mine subsidence management works in Korea.

A Study on the educational program model for the citizens on patrol (시민자율방범 교육프로그램 개발에 관한 연구)

  • Kang, Yong-Gil
    • Korean Security Journal
    • /
    • no.39
    • /
    • pp.63-93
    • /
    • 2014
  • The importance of citizen as a key of community safety has increased, and the legislation to support the citizen's activities is continued. However systematic and detailed action plans are not enough to something. Thus, the purpose of this research is to develop the educational program model for the citizens on patrol for the improvement of practical use. The methods of this research are to make and suggest the educational program for citizens on patrol by literature review and cases analysis of educational program implemented one years ago. The findings are suggested as belows. First, the learners need the contents can be practically used in the field and sufficient time of education. Second, the subgoal to achieve the ultimate goal of education program model should be established as 'customer-centered, field-oriented, competence reinforcement', and driving strategy must be composed of four stages as plan-design-implementation-evaluation. Also, for strategy of each stage, detailed sub-strategies from preparation to execution of education have to be considered. Third, education program must be categorized by basic-intermediate-expert courses depending on the level of learners, and theoretically and practically oriented curriculum subjects are organized in balance by each course.

  • PDF

Damage estimation for structural safety evaluation using dynamic displace measurement (구조안전도 평가를 위한 동적변위 기반 손상도 추정 기법 개발)

  • Shin, Yoon-Soo;Kim, Junhee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.87-94
    • /
    • 2019
  • Recently, the advance of accurate dynamic displacement measurement devices, such as GPS, computer vision, and optic laser sensor, has enhanced the structural monitoring technology. In this study, the dynamic displacement data was used to verify the applicability of the structural physical parameter estimation method through subspace system identification. The subspace system identification theory for estimating state-space model from measured data and physics-based interpretation for deriving the physical parameter of the estimated system are presented. Three-degree-freedom steel structures were fabricated for the experimental verification of the theory in this study. Laser displacement sensor and accelerometer were used to measure the displacement data of each floor and the acceleration data of the shaking table. Discrete state-space model generated from measured data was verified for precision. The discrete state-space model generated from the measured data extracted the floor stiffness of the building after accuracy verification. In addition, based on the story stiffness extracted from the state space model, five column stiffening and damage samples were set up to extract the change rate of story stiffness for each sample. As a result, in case of reinforcement and damage under the same condition, the stiffness change showed a high matching rate.