• Title/Summary/Keyword: Reinforcement of the safety

Search Result 778, Processing Time 0.024 seconds

A Study on the Impact Resistance of Concrete by Reinforcement Condition of Aramid Fiber (아라미드 섬유의 개질이 모르타르의 내충격 성능에 미치는 영향 검토)

  • Kim, Tae-Soo;Kim, Gyu-Yong;Jeon, Young-Seok;Nam, Jeong-Soo;Shin, Kyoung-Su;Jeon, Joong-Kyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.219-220
    • /
    • 2011
  • The research is for building safety by using fiber reinforced concrete against impact load. The aim of this study is to evaluation of Impact Resistance of mortar by Reinforcement Condition of Aramid Fiber(fiber length, fiber surface treatment, fiber contents, hyrid reinforcement with steel fiber). Thus, the results indicate that it can improve mix condition and impact resistance by fiber surface treatment.

  • PDF

A Study on the Improvement of Repair and Reinforcement Quantity Take-off in Fire-damaged Area Using 3D Laser Scanning (3D Laser Scanning을 활용한 화재 손상 부위의 보수·보강 물량 산출 방식 개선에 관한 연구)

  • Jeong, Hoi-Jae;Ham, Nam-Hyuk;Lee, Byoung-Do;Park, Kwang-Min;Kim, Jae-Jun
    • Journal of KIBIM
    • /
    • v.9 no.1
    • /
    • pp.11-21
    • /
    • 2019
  • Recently, there is an increase in fire incidents in building structures. Due to this, the importance of fire-damaged buildings' safety diagnosis and evaluation after fire is growing. However, the existing fire-damaged safety diagnosis and evaluation methods are personnel-oriented, so the diagnostic results are intervened by investigators' subjectivity and unquantified. Thus, improper repair and reinforcement can result in secondary damage accidents and economic losses. In order to overcome these limitations, this study proposes using 3D laser scanning technology. The case analysis of fire-damaged building structures was conducted to verify the effectiveness of accuracy and manpowering by comparing the existing method and the proposed method. The proposed method using 3D laser scanning technology to obtain point cloud data of fire-damaged field. The point cloud data and BIM model is combined to inspect the fire-damaged area and depth. From inspection, quantified repair and reinforcement quantity take-off can be acquired. Also, the proposed method saves half of the manpowering within same time period compared to the existing method. Therefore, it seems that using 3D laser scanning technology in fire-damaged safety diagnosis and evaluation will improve in accuracy and saving time and manpowering.

Probabilistic analysis of anisotropic rock slope with reinforcement measures

  • Zoran Berisavljevic;Dusan Berisavljevic;Milos Marjanovic;Svetlana Melentijevic
    • Geomechanics and Engineering
    • /
    • v.34 no.3
    • /
    • pp.285-301
    • /
    • 2023
  • During the construction of E75 highway through Grdelica gorge in Serbia, a major failure occurred in the zone of reinforced rock slope. Excavation was performed in highly anisotropic Paleozoic schist rock formation. The reinforcement consisted of the two rows of micropile wall with pre-stressed anchors. Forces in anchors were monitored with load cells while benchmarks were installed for superficial displacement measurements. The aim of the study is to investigate possible causes of instability considering different probability distributions of the strength of discontinuities and anchor bond strength by applying different optimization techniques for finding the critical failure surface. Even though the deterministic safety factor value is close to unity, the probability of failure is governed by variability of shear strength of anisotropic planes and optimization method used for locating the critical sliding surface. The Cuckoo search technique produces higher failure probabilities compared to the others. Depending on the assigned statistical distribution of input parameters, various performance functions of the factor of safety are obtained. The probability of failure is insensitive to the variation of bond strength. Different sampling techniques should yield similar results considering that the sufficient number of safety factor evaluations is chosen to achieve converged solution.

Modified Equation for Ductility Demand Based Transverse Confining Reinforcement (요구연성도에 따른 횡방향 심부구속철근량 산정식 수정)

  • Son, Hyeok-Soo;Lee, Jae-Hoon;Suh, Suk-Koo;Oh, Myung-Seok;Yoon, Cheol-Kyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.7-8
    • /
    • 2009
  • In this research, comparison and analysis were performed to understand how the cover thickness influences the equation for calculating the amount of confining reinforcement for reinforced concrete columns. And, also, an equation for calculating the amount of confining reinforcement was proposed for reasonable seismic design. In addition, appropriateness and safety of the proposed equation were examined based on the various experimental results performed at home and abroad.

  • PDF

Analysis of Tube Support Plate Reinforcement Effects on Burst Pressure of Steam Generator Tubes with Axial Cracks (증기발생기 전열관지지판의 축균열 파열억제 효과 분석)

  • Kang, Yong Seok;Lee, Kuk Hee;Kim, Hong Deok;Park, Jai Hak
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.4
    • /
    • pp.168-173
    • /
    • 2015
  • A steam generator tubing is one of the main pressure boundary of the reactor coolant system in the nuclear power plants. Structural integrity refers to maintaining adequate margins against failure of the tubing. Burst pressure of a tube at tube support plate can be higher than that for a free-span tube because failure behaviors could be interfered from the tube support plate. Alternative repair criteria for out-diameter stress corrosion cracking indications in tubes to the drilled type tube support plate were developed, however, there are very limited information to the eggcrate type tube support plate. This paper discussed reinforcement effect of steam generator tube burst pressure with axial out-diameter stress corrosion cracking within an eggcrate type tube support plate. A series of tube burst tests were performed under the room temperature and it was found out that there is no significant but marginal effects.

Study on the necessity of improving safety manager reinforcement and replacement regulation system (안전관리자 증원·교체 규정 제도 개선의 필요성 연구)

  • Song, Dong-Yun;Cho, Sung Woong;Lee, Sung Hwan
    • Journal of the Korea Safety Management & Science
    • /
    • v.19 no.4
    • /
    • pp.77-85
    • /
    • 2017
  • As industrialization progresses, mass production becomes a smart production system. However, industrial accidents do not decline, and during the course of industrialization, due to the logic of economic agents that have an economical and effective employment environment, they are changed to non-regular workers. The Occupational Safety and Health Act stipulates that the safety managers must be distinguished and the safety managers perform the task of conducting industrial accidents by balancing the duties and regulations specified in the Act on Special Measures for Deregulation. Safety administrators providing advice on issues needed to prevent industrial accidents and preventive measures We would like to present the problems and improvements that may arise due to safety managers' replacement due to accidents caused by industrial accidents or accidents.

A Study on the Selection of Factors for Evaluating the Efficiency of Slope Reinforcement Using AHP (AHP 분석을 활용한 비탈면 보강공 성능평가를 위한 중요항목 도출에 관한 연구)

  • Lee, Jonghyun;Kim, Oil;Kim, Jinhwan;Kim, Wooseok;Choi, Junghae
    • The Journal of Engineering Geology
    • /
    • v.29 no.4
    • /
    • pp.531-539
    • /
    • 2019
  • Various slope protect systems are applied to the slope located around the major facility to maintain stability, and the applied these systems play an important role in protecting the structure by ensuring the safety of the slope. Reinforcement techniques ensure complete safety at the time of application to the slope, but over time, it may become difficult to secure safety. In particular, the deterioration of reinforcement systems may significantly reduce the stability of the slope. Therefore, it is necessary to secure the safety of the slope by defining the necessary items for maintenance of the protect systems and verifying them by the field expert. In this study, a group of experts were formed to determine these items and select their importance among them, and based on their data, the importance of each item was selected by Analytic Hierarchy Process (AHP). The selected items are expected to play an important role in the maintenance of reinforcement systems applied to the slope based on the survey items used by experts.

Seismic response of geosynthetic reinforced retaining walls

  • Jesmani, Mehrab;Kamalzare, Mehrad;Sarbandi, Babak Bahrami
    • Geomechanics and Engineering
    • /
    • v.10 no.5
    • /
    • pp.635-655
    • /
    • 2016
  • The effects of reinforcement on the horizontal and vertical deformations of geosynthetic reinforced retaining walls are investigated under a well-known seismic load (San Jose earthquake, 1955). Retaining walls are designed with internal and external stability (with appropriate factor of safety) and deformation is chosen as the main parameter for describing the wall behavior under seismic load. Retaining walls with various heights (6, 8, 10, 12 and 14 meter) are optimized for geosynthetics arrangement, and modeled with a finite element method. The stress-strain behavior of the walls under a well-known loading type, which has been used by many previous researchers, is investigated. A comparison is made between the reinforced and non-reinforced systems to evaluate the effect of reinforcement on decreasing the deformation of the retaining walls. The results show that the reinforcement system significantly controls the deformation of the top and middle of the retaining walls, which are the critical points under dynamic loading. It is shown that the optimized reinforcement system in retaining walls under the studied seismic loading could decrease horizontal and vertical deformation up to 90% and 40% respectively.

Design of Bumper Backbeam Center Reinforcement Bracket for IIHS Full Overlap Bumper Test (IIHS 풀 오버랩 범퍼 시험 대응 범퍼 백빔 중앙 보강재 설계)

  • Kang, Sungjong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.1
    • /
    • pp.105-111
    • /
    • 2015
  • Since 2007, Insurance Institute of Highway Safety(IIHS) has conducted the new bumper test using bumper barrier to estimate the repair cost of impacted vehicle. In this study, for the front body FE model of a medium size passenger car analyzes were carried out to optimize the shape of backbeam center reinforcement bracket. First, overlap effect was examined with changing the overlap magnitude and spot welds were added along the backbeam center line for reducing the section shear deformation. Next, for an overlap model design parameter study was performed for the bracket. Thickness effect was examined and an inner reinforcement was added to the bracket. Also, the lower part of bracket was deleted and additionally the bracket length was extended. The results were discussed in terms of backbeam backward deflection, barrier backstop intrusion and weight. Compared with the current design, the final model showed 44.1% bracket weight reduction with 30.0% decrease of backbeam deflection.

Seismic capacity of brick masonry walls externally bonded GFRP under in-plane loading

  • Wang, Quanfeng;Chai, Zhenling;Wang, Lingyun
    • Structural Engineering and Mechanics
    • /
    • v.51 no.3
    • /
    • pp.413-431
    • /
    • 2014
  • By carrying out the experiment of eight pieces of brick masonry walls with pilaster strengthened by Glass fiber reinforced polymer (GFRP) and one piece of normal masonry wall with pilaster under low reversed cyclic loading, the failure characteristic of every wall is explained; Seismic performances such as hysteresis, stiffness and its degeneration, deformation, energy consumption and influence of some measures including strengthening means, reinforcement area proportion between GFRP and wall surface, "through-wall" anchor on reinforcement effects are studied. The test results showed that strengthening modes have little influence on stiffness, stiffness degeneration and deformation of the wall, but it is another thing for energy consumption of the wall; The ultimate load, deformation and energy consumption of the walls reinforced by glass fiber sheets was increased remarkably, rigidity and its degeneration was slower; Seismic performance of the wall which considers strengthening means, reinforcement area proportion between GFRP and wall surface, "through-wall" anchor at the same time is better than under the other conditions.