• Title/Summary/Keyword: Reinforced foundation soil

Search Result 105, Processing Time 0.022 seconds

Reinforcing effect of vetiver (Vetiveria zizanioides) root in geotechnical structures - experiments and analyses

  • Islam, Mohammad S.;Shahin, Hossain M.
    • Geomechanics and Engineering
    • /
    • v.5 no.4
    • /
    • pp.313-329
    • /
    • 2013
  • Vetiver grass (Vetiveria zizanioides) is being effectively used in many countries to protect embankment and slopes for their characteristics of having long and strong roots. In this paper, in-situ shear tests of the ground with the vetiver roots have been conducted to investigate the stabilization properties corresponding to the embankment slopes. Numerical analyses have also been performed with the finite element method using elastoplastic subloading $t_{ij}$ model, which can simulate typical soil behavior. It is revealed from field tests that the shear strength of vetiver rooted soil matrix is higher than that of the unreinforced soil. The reinforced soil with vetiver root also shows ductile behavior. The numerical analyses capture well the results of the in-situ shear tests. Effectiveness of vetiver root in geotechnical structures-strip foundation and embankment slope has been evaluated by finite element analyses. It is found that the reinforcement with vetiver root enhances the bearing capacities of the grounds and stabilizes the embankment slopes.

A Study on Applicability of Stabilizing Pile to Foundation Soil of Slope with Various Strength Parameters (사면하부지반의 강도정수에 따른 억지말뚝 적용성 연구)

  • Lee, Seung-Hyun;Jang, In-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.331-337
    • /
    • 2016
  • Several foundation soil conditions below a homogeneous sand slope were assumed and slope stability analyses were conducted to determine the soil condition, in which a stabilizing pile can be used to increase the factor of safety against sliding. The assumed heights of the sand slope were 5m and 10m. For a 5m slope height, a stabilizing pile can be used in the foundation soil with a $15^{\circ}$ internal friction angle and a cohesion of 10kPa. For a 10m slope height, a stabilizing pile can be used in the foundation soil with a $20^{\circ}$ internal friction angle and a cohesion of 10kPa and a stabilizing pile can be used in the foundation soil with a $0^{\circ}$ internal friction angle and 40kPa, 45kPa and 50kPa of cohesion. According to the analysis results of stabilizing pile-reinforced foundation soil, the length of the stabilizing pile and magnitude of the maximum bending moment were strongly affected by the internal friction angle of the foundation soil. The lengths of stabilizing pile, for an internal friction angle of $0^{\circ}$ were 4.6, 8.0 times greater than those with an internal friction angle of $5^{\circ}$. The magnitude of the maximum bending moment of the stabilizing pile for an internal friction angle of $0^{\circ}$ was 24.6 times greater than that for an internal friction angle of $5^{\circ}$. Practically, a stabilizing pile cannot be used for foundation soil with an internal friction angle of $0^{\circ}$. Considering the results derived from this study, the effects of a stabilizing pile can be maximized for soft foundation soil that is embanked with a slow construction speed.

Behavior of eccentrically inclined loaded footing resting on fiber reinforced soil

  • Kaur, Arshdeep;Kumar, Arvind
    • Geomechanics and Engineering
    • /
    • v.10 no.2
    • /
    • pp.155-174
    • /
    • 2016
  • A total of 104 laboratory model tests on a square footing subjected to eccentrically inclined loads supported by sand reinforced with randomly distributed polypropylene fibers were conducted in order to compare the results with those obtained from unreinforced sand and with each other. For conducting the model tests, uniform sand was compacted in a test box at one particular relative density of compaction. The effect of percentage of reinforcement used, thickness of the reinforced layer, angle of inclination of load to vertical and eccentricity of load applied on various prominent factors such as ultimate load, vertical settlement, horizontal deformation and tilt were investigated. An improvement in ultimate load, vertical settlement, horizontal deformation and tilt of foundation was observed with an increase in the percentage of fibers used and thickness of reinforced sand layer under different inclinations and eccentricities of load. A statistical model using non-linear regression analysis based on present experimental data for predicting the vertical settlement ($s_p$), horizontal deformation ($hd_p$) and tilt ($t_p$) of square footing on reinforced sand at any load applied was done where the dependent variable was predicted settlement ($s_p$), horizontal deformation ($hd_p$) and tilt ($t_p$) respectively.

Allowable Bearing Capacity of Shallow Foundation on Geogrid-Reinforced Sand (Geogrid로 보강된 사질토층에 정방향 얕은 기초의 허용지지력에 관한 연구)

  • Yeo, Byung Chul;Shin, Bang Woong;Das, Braja M.;Puri, Vijay K.
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.335-341
    • /
    • 1994
  • Laboratory model test results for bearing capacity of a square shallow foundation supported by a sand layer reinforced with layers of geogrid have been presented. Use of geogrids provides an economical and time efficient method for improving load-settlement, and strength characteristics of weak soils. Especially the geogrid reinforced soil will be necessary in the case of foundations supporting machines, embankments for railroads, and foundations of structures in earthquake-prone areas. Based on the present model test results, the bearing capacity ratio (BCR) with respect to the ultimate bearing capacity (UBC), at levels of limited settlement of the shallow foundation. has been determined. Also, it appears that significant improvement in the UBC of medium sands can be achieved by reinforcing elements which shows promise for future work.

  • PDF

Dynamic Load-Permanent Settlement of Shallow Foundations Supported by Geogrid-Reinforced Sand (Geogrid로 보강된 사질토층에 얕은 기초의 동적 하중-침하 관계에 관한 연구)

  • Yeo, Byung Chul;Shin, Bang Woong;Kim, Soo Sam;Das, Braja M.;Yen, Max
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.933-939
    • /
    • 1994
  • This paper has primarily been directed to evaluate the beneficial effects of geogrid reinforcement in a medium sand on the ultimate bearing capacity (UBC) of a surface foundation. Also, this study was conducted to investigate the permanent settlement of a shallow square foundation in improving the cyclic load-settlement characteristics of reinforced sand deposits by conducting a series of laboratory model tests. Use of geogrids provides an economical and time efficient method for improving load-settlement and strength characteristics of weak soils. Especially the geogrid reinforced soil will be necessary in the case of foundation supporting machines, embankments for railroads, and foundations of structures in earthquake-prone areas. Finally, the test results indicate that the use of geogrid reinforcement in sand subgrades improves their performance under dynamic loads which shows promise for future work.

  • PDF

An Analysis of Stresses and Behaviors in the Geotextile-Reinforced Soil Structures (토목섬유 보강 구조물의 응력 및 거동 해석)

  • 고홍석
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.4
    • /
    • pp.94-108
    • /
    • 1988
  • The use of geotextile as reinforcing materials in soil structures has become widespread throughout the world. Geotextile reinforcement has been used in retaining walls, roadbed, embankment stabilization and especially reinforcement of soft foundation, and so on, In the past, however, its design and construction have been performed empirically. In this study, laboratory model tests were carried out in order to investigate the effects of geotextile rein- forcement on vertical and horizontal displacement and other characteristics in soft founda- tions. The experiments were executed in eight treatments ;no geotextile between embank - ment and subsoils, and seven geotextiles with different tensile strength. And such factors as the loading conditions, the tensile strength of geotextiles, the ingredient of geotextiles and the elapsed time were investigate in this study. And the analytical method were executed in order to study the stress and behavior of geotextile - reinforced soil structure by the nonlinear elasto - plastic finite element model. The following conclusions were drawn from this study. 1. Geotextile reinforcement reduced the effects of banking loads on subsoils more effectively with the increase of their tensile strength. 2. As the tensile strength of geotextiles was increase, the rate of the initial vertical disp - lacements of loading plate was reduced inverse proportional to loads, Rowever, the effect of loading was reduced when the loads exceed a certain limits, 3. The effect of reinforcement of nonwoven geotextile was 1.5-4.5 times larger than that of the woven geotextile with equivalent tensile strength. 4. The increased bearing capacity and the reduced settlement are proportioned as the tensile strength of geotextile. 5. The settlement at the long time loading were developed almost all, were completed after 10 days and the additional settlement were not developed since then. 6. The nonlinear elasto - plastic finite element method are accurate to predict the stresses and behayior of geotextile - reinforced soil structures.

  • PDF

Bearing Capacity Analyses of Shallow Foundations in Reinforced Slopes

  • Kim, Hong-Taek;Choi, In-Sik;Sim, Young-Jong
    • Geotechnical Engineering
    • /
    • v.12 no.3
    • /
    • pp.127-148
    • /
    • 1996
  • Recently, foundations of heavy structures such as bridge abutments have been built on slopes or near the crest of slopes at an increasing rate. Because the bearing capacity of such foundations is considerably lower than the bearing capacity of the same soil on a level ground, deep footings such as piles and caissons are often used. However, the costs of such methods are generally very high. One of the new techniques to overcome the problem is to place reinforcing members such as geosynthetics or metal strips horizontally at some depths beneath the footings. Rational methods of analysis to predict the bearing capacity of footings in reinforced slopes are therefore needed. This paper proposes an analytical method for estimating the increase in bearing capacity gained from the included horizontal strips or ties of tensile reinforcing in the foundation soil below the footing built near the crest of a slope. A failure mechanism, including the concept of'wide slab effect', adopted in the present study for analyzing the bearing capacity of foundations in reinforced slopes, is established through the observed model test behaviors described by Binquet SE Lee and Huang et al, and the Boussinesq solutions. The analytical results are then compared with the experimental data described in the paper by Huang et al. Also in order to properly evaluate the soil reinforcement interaction, typical pullout test values of the apparent friction coefficient, which usually vary with depths owing to both the increase of the shearing volume and the increase in local stress caused by soil dilatancy, are analyzed and related functionally. Furthermore, analytical parametric studies are carried out to investigate the effect and significance of various pertinent parameters associated with design of reinforced slope foundations. Keywords : Bearing capacity, Reinforced slope, Slab effect, Friction coefficient.

  • PDF

Numerical analysis of geocell reinforced ballast overlying soft clay subgrade

  • Saride, Sireesh;Pradhan, Sailesh;Sitharam, T.G.;Puppala, Anand J.
    • Geomechanics and Engineering
    • /
    • v.5 no.3
    • /
    • pp.263-281
    • /
    • 2013
  • Geotextiles and geogrids have been in use for several decades in variety of geo-structure applications including foundation of embankments, retaining walls, pavements. Geocells is one such variant in geosynthetic reinforcement of recent years, which provides a three dimensional confinement to the infill material. Although extensive research has been carried on geocell reinforced sand, clay and layered soil subgrades, limited research has been reported on the aggregates/ballast reinforced with geocells. This paper presents the behavior of a railway sleeper subjected to monotonic loading on geocell reinforced aggregates, of size ranging from 20 to 75 mm, overlying soft clay subgrades. Series of tests were conducted in a steel test tank of dimensions $700mm{\times}300mm{\times}700mm$. In addition to the laboratory model tests, numerical simulations were performed using a finite difference code to predict the behavior of geocell reinforced ballast. The results from numerical simulations were compared with the experimental data. The numerical and experimental results manifested the importance that the geocell reinforcement has a significant effect on the ballast behaviour. The results depicted that the stiffness of underlying soft clay subgrade has a significant influence on the behavior of the geocell-aggregate composite material in redistributing the loading system.

Studies on the Development of Bearing Capacity Reinforcement for the Foundation of Soil (기초지반의 지지력보강공법에 관한 연구)

  • 유동환;최예환;유연택
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.1
    • /
    • pp.38-49
    • /
    • 1988
  • This paper presented as follows results of laboratory model tests with various shaped footings on soil bed reinforced with the strips on the base of behaviour of soil structure according to the loads and triaxial test results reinforced with geotextiles. Their parameters studied were the effects on the bearing capacity of a footing of the first layer of reinforcement, horizontal and vertical spacing of layers, number of layers, tensile strength of reinforcement and iclination load to the vertical 1.Depending on the strip arrangement, ultimate bearing capacity values could be more improved than urreinforced soil and the failure of soil was that the soil structure was transfered from the macrospace to microspase and its arrangement, from edge to edge to face to face. 2.The reinforcement was produced the reinforcing effects due to controlling the value of factor of one and permeable reinforcement was never a barrier of drainage condition. 3.Strength ratio was decreased as a linear shape according to increment of saturation degree of soil used even though at the lower strength ratio, the value of M-factor was rot influenced on the strength ratio but impermeable reinforcement decreased the strength of bearing capacity. 4.Ultimate bearing capacity under the plane-strain condition was appeared a little larger than triaxial or the other theoretical formulars and the circular footing more effective. 5.The maximum reinforcing effects were obtained at U I B=o.5, B / B=3 and N=3, when over that limit only acting as a anchor, and same strength of fabric appeared larger reinforcing effects compared to the thinner one. 6.As the LDR increased, more and more BCR occurred and there was appeared a block action below Z / B=O.5, but over the value, decrement of BCR was shown linear relation, and no effects above one. 7.The coefficient of the inclination was shown of minimum at the three layers of fabrics, but the value of H / B related to the ultimate load was decreased as increment of inclination degree, even though over the value of 4.5 there wasn't expected to the reinforcing effects As a consequence of the effects on load inclination, the degree of inclination of 15 per cent was decreased the bearing capacity of 70 per cent but irnproved the effects of 45 per cent through the insertion of geotextile.

  • PDF

Stress Distribution under a Geogrid-Reinforced Soil Pad (지오그리드로 보강한 성토지반의 응력분포)

  • 이규진;신방웅;신은철
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.4
    • /
    • pp.87-91
    • /
    • 2001
  • 얕은 기초의 침하는 기초에 가해지는 상재 하중의 지반에 전달될 때 분포되는 응력의 특성과 크기에 관련되어 일어난다. 일반적으로 지반의 보강재로 사용되는 지오그리드로 두께가 작은 토체를 보강하면 지중에 전달되는 응력을 재분포시켜 감소시킨다. 이 논문에서는 현장시험을 통하여 여러 층의 지오그리드로 토체를 보강시 토체 상부에 가해지는 원형 등분포 하중하에서 토체의 응력 분포를 측정하였다. 인천국제 공항 건설 현장의 준설 매립 구간에서 행하여진 이 시험을 통하여, 지오그리드로 보강된 토체의 하중 분포는 기초에 가해지는 하중 강도와, 보강재 포설층수, 토체의 두께의 함수로 나타낼 수 있다.

  • PDF