• Title/Summary/Keyword: Reinforced Roadbed

Search Result 74, Processing Time 0.03 seconds

Application on Geotextiles for the Roadbed Reinforcement of the Concrete Track Rehabilitation (콘크리트궤도 개량공사시 노반 보강을 위한 토목섬유의 적용)

  • Lee, Il-Wha;Jang, Seung-Yup;Han, Sung-Wu;Kim, Yong-Jin
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1802-1806
    • /
    • 2007
  • The most important factor is the roadbed bearing capacity at concrete track construction. Particularly, in case of rehabilitation, it is essential to secure the uniform roadbed stiffness to prevent the irregular settlement. In this study, reinforced effect of the geotextiles is investigated which is applied to concrete track rehabilitation. The geotextiles is installed two or three layers as the condition of the ground and structure. The reinforced effect of geotextiles is confirmed by the strain gage attached on the geotextiles surface.

  • PDF

Prediction of Cumulative Plastic Displacement in the Concrete Track Roadbed Caused by Cyclic Loading (반복하중에 의한 콘크리트 궤도 노반의 누적 소성 변위 예측)

  • Won, Sang-Soo;Lee, Jin-Wook;Lee, Seong-Hyeok;Jung, Young-Hoon
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.1
    • /
    • pp.52-58
    • /
    • 2014
  • Plastic deformation of roadbed influences the stability and maintenance of concrete slab track. Long-term plastic deformation in a railway roadbed is generated primarily due to accumulated inelastic strains caused by repeated passing of trains. Prediction of cumulative plastic deformation is important in cost-effective maintenance of railway tracks as well as for the safe operation of trains. In this study, the vertical displacements in railway roadbeds with different thicknesses of reinforced roadbed were computed. Parameters of the power model for cumulative plastic strain were calibrated by using the data from triaxial tests and full-scale loading tests. Results of three-dimensional finite element analyses of standard roadbed sections provide us with design guidelines for the selection of the thickness of reinforced roadbed.

Analysis of Reinforcement Effect with Geotextile types on Soft Ground (연약노반상에서의 토목섬유 적용에 따른 보강효과 분석)

  • Lee Jin-Wook;Choi Chan-Yong;Lee Seong-Hyeok
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.1 s.32
    • /
    • pp.69-75
    • /
    • 2006
  • In this study, Several types of geotextile was used on the selected track-bed. The use of geotextile prove a economical and efficientmean to prevent the problem of mud-pumping and settlement. Field testing sections from Mock-haeng to Dong-ryang in the Chungbuk lines in Korea were selected to investigate in current condition the of track and roadbed. This testing site was divided into 5 sections. In the four sections, different types of geotextiles were installed. In order to estimate for performance of the reinforced section with geotextiles on the soft ground, four different geotextiles were installed and compared with no reinforced section. Also, after the installation, mud-pumping, settlement of elastic or plastic sleeper, failure of track, wheel-loads, and earth pressures were investigated. The following is the summaries from the field tests. As a conclusion, According to naked eyes investigation, mud pumping didn't happen at reinforced sections, but no reinforced section was happen to a top of track for 6 months. And Elastic displacements at the reinforced and no reinforced section were about $30.7\%\;and\;73.8\%,$ respectively. Also, It was found that plastic displacement in reinforced section was retrained about $50\%$ more than that in no reinforced section.

Evaluation on the Applicability of the Conventional Roadbed Stiffness for High Speed Concrete Track (일반철도 노반 강성조건에서의 고속철도용 콘크리트 궤도의 적용성 검토)

  • Lee, Jin Wook;Lee, Seong Hyeok;SaGong, Myung;Lyu, Tae Jin
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.1
    • /
    • pp.40-46
    • /
    • 2013
  • Based on Korean railway design standards, the thicknesses of the reinforced roadbeds of conventional and high speed railways are different, and so too, for the size distribution of the ballast particles. Accordingly, considerable cost would be required to increase operating speeds of conventional lines, in particular related to changing from a ballasted track system to a ballastless one. In this study, applicability of a roadbed which supports conventional ballasted track, for use as a ballastless track for a high speed rail line was examined. A reinforced roadbed for a conventional railway is 20cm thick, and the type of material used for a conventional reinforced roadbed is M-40 (crushed gravel for road embankments). A dynamics test was conducted to evaluate the occurrence of the permanent settlement of the track substructure. These results suggest that, without changes to the track substructure, an operational speed of 400km/h is feasible with a ballastless track. This result; however, is from laboratory experiments. Further studies, such as numerical analyses or field validation, are required.

Application of Geosynthetic-Reinforced Structures for Railway (철도구조물에 적용되고 있는 토목섬유보강구조물의 현황)

  • Shin, Eun-Chul;Lee, Joong-Hwa
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.337-349
    • /
    • 2009
  • In recent years, the cutting and banking areas along the railway in Korea are exposed to the erosion problem during every year. The reinforcement is a composite construction material in which the strength of engineering fill is enhanced by the addition of strong tensile reinforcement in many different types. Various problems of the railway infrastructure have occurred due to the differential settlement, frost heaving, mud pumping, lack of bearing capacity, partially loss of embankment. In advanced countries, railway roadbed reinforcement is applied to solve these problems on railway roadbed. This paper presents the solution of such problems by means of the engineering works incorporated with railway reinforcement infrastructures such as geotextile bag method, existing grouting method, geocell, reinforced earth, soil nailing and so on.

  • PDF

Dynamic Performance of Geotextile Container under the Simulated Cyclic Train Loading (모사반복 열차하중 재하시 토목섬유 콘테이너의 동적 성능)

  • Hwang Seon Keun;Koh Tae Hoon;Park Sung Hyun;Choi Chan Yong
    • Proceedings of the KSR Conference
    • /
    • 2003.10b
    • /
    • pp.92-97
    • /
    • 2003
  • Roadbed failure due to the rainfall may bring out social and economic demage such as the loss of life and property, the consumption of time and cost for recovery, and the delay of logistics in railway. In this study, the method using Geotextile Container was applied to rehabilitation of the railway roadbed which was failed by rainfall. The real scale tests with the simulated train loading were performed in order to evaluate the dynamic performance at the railway roadbed using Geotextile Container. The results of these tests were compared with unreinforced and reinforced cases with Geotextile Container, respectively. The data gathered by various measurement devices from these real scale tests would be useful to evaluate and understand the roadbed with Geotextile Container. Furthermore, the results of this study would be useful to ensure the workability and to save much time for restoration and to be widely applied to practical use.

  • PDF

A Study on Reinforcement Effectiveness and Development of Design Method for Railway Roadbed by Geogrid (지오그리드를 활용한 철도노반의 보강효과 및 설계기법 개발에 관한 연구)

  • 심재범;신민호;신은철;채영수
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.526-533
    • /
    • 2001
  • Since 1970's in Germany and U.S.A., the studies on increasing the bearing capacity of railway roadbed using geogeid have been conducted for the repair, reinforcement, and extention of railways constructed on soft soils. In this study, the railway roadbed system reinforced with geogrids has been analyzed and investigated using finite element method and results of the previous studies were conducted in Korea and other nations. And the method for estimating the railway roadbed thickness was developed based on the equivalent method using the multi-layer theory and the deformation modulus Ev.

  • PDF

Performance of Railway Roadbed Reinforced by Acrylate in Laboratory Experiment (실내실험을 통한 아크릴레이트의 철도노반 보강 성능)

  • Yoon, Hwan-Hee;Son, Min;Kim, Jin-Hwan;Kim, Dong-Hyun;Kim, Byung-Hyun;Jung, Hyuk-Sang
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.1
    • /
    • pp.9-19
    • /
    • 2021
  • This paper deals with the reinforcement performance of acrylate for reinforcing the settled railway roadbed. Concrete tracks have the advantage of reducing track maintenance costs and high resistance to track destruction. However, roadbed settlement is occurring in some construction sections, and the safety of railways is a serious concern because of difficulties in maintenance. Currently, maintenance through the track restoration method is being carried out in Korea as a way of roadbed settlement in concrete tracks, but continuous re-settlement can occur because the roadbed itself cannot be reinforced, and there are very few cases of reinforcement of railway roadbeds and field application. So the development of reinforcement materials and construction methods to reinforce railway roadbeds is required. Therefore, in this paper, acrylate was selected as reinforcement material for railway roadbed, and the reinforcement performance of acrylate was analyzed through experiment. As a result, it was analyzed that the acrylate can penetrate into a permeability coefficient of 1×10-4 cm/sec, and secure uniaxial compression strength of 0.5 MPa/30min or more and stiffness of 80 MPa or more.

Behavior Characteristics of Railway Roadbed Retained by Geosynthetic Reinforced Segmental Wall Under Train Load (열차 하중 작용 시 블록식 보강토 옹벽으로 지지된 철도 노반의 거동)

  • Lee, Seong Hyeok;Choi, Chan Yong;Lee, Jin Wook
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.5
    • /
    • pp.467-475
    • /
    • 2012
  • Static and dynamic train load tests were conducted to evaluate the train load transfer mechanism in the roadbed which was retained by two types (fully and partially) of segmental retaining walls reinforced by geogrid. The test roadbed was 2.6m high, 5m wide, and 6m long. A combination of earth pressure gages, displacement transducers, and strain gages were placed in specific locations to measure the responses. Test results showed that the wall displacement pattern as well as the earth pressure for the fully reinforced retaining wall was different from those for the partially reinforced retaining wall. In the dynamic train load test, the strain in the upper part of the wall tended to decrease, and both the residual deformation and the rate of the deformation were significantly lower than those in the current design standard.

Bearing Capacity of Geogrid-Reinforced Railroad Ballast (지오그리드로 보강된 철도노반 쇄석기층의 지지력에 관한 연구)

  • 신은철;김두환;이규진;이상조
    • Proceedings of the KSR Conference
    • /
    • 1999.05a
    • /
    • pp.367-374
    • /
    • 1999
  • The selection of geogrid types for the use of reinforced rail roadbed is important in the design of railways. Also, the problem of the construction damage on the geogrid during construction is raised by the field engineers. Therefore, laboratory model tests were peformed to investigate the efficiency of the bearing capacity and construction damage. As a result, it was found that the bearing capacity of the rigid geogrid reinforced railroad ballast shows 1.54 times higher than that of the flexible geogrid reinforced case. In addition, there were no noticeable damage during construction.

  • PDF