• Title/Summary/Keyword: Reinforced Concrete Slab Bridge

Search Result 67, Processing Time 0.02 seconds

Design Equation Suggestion through Parametric Study of Laterally Restrained Concrete Decks with Steel Strap (Steel Strap으로 횡보강된 콘크리트 바닥판의 매개변수해석을 통한 설계식 제안)

  • Kim, Cheol-Hwan;Yi, Seong-Tae;Jo, Byung-Wan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.49-57
    • /
    • 2014
  • A deterioration of typical reinforced concrete (RC) bridge deck is due to the use of calcium chloride, cracks and water penetration inside of the deck slab with steel reinforcement. In order to eliminate the defects of RC decks in terms of material, therefore, the steel-strapped deck system is studied and developed by maximizing the arching effect while the girders are restrained using straps in lateral direction to the bridge. This parametric study was performed to analyze the structural characteristics of steel-strapped deck, and to identify the factors of the thickness, span length and lateral restraint stiffness of deck slab considering the concrete non-linearity. Finally, a design equation, which is adequate to South Korea, is suggested.

Design and modelling of pre-cast steel-concrete composites for resilient railway track slabs

  • Mirza, Olivia;Kaewunruen, Sakdirat;Kwok, Kenny;Griffin, Dane W.P.
    • Steel and Composite Structures
    • /
    • v.22 no.3
    • /
    • pp.537-565
    • /
    • 2016
  • Australian railway networks possess a large amount of aging timber components and need to replace them in excess of 280 thousands $m^3$ per year. The relatively high turnover of timber sleepers (crossties in a plain track), bearers (skeleton ties in a turnout), and transoms (bridge cross beams) is responsible for producing greenhouse gas emissions 6 times greater than an equivalent reinforced concrete counterparts. This paper presents an innovative solution for the replacement of aging timber transoms installed on existing railway bridges along with the incorporation of a continuous walkway platform, which is proven to provide environmental, safety and financial benefits. Recent developments for alternative composite materials to replace timber components in railway infrastructure construction and maintenance demonstrate some compatibility issues with track stiffness as well as structural and geometrical track systems. Structural concrete are generally used for new railway bridges where the comparatively thicker and heavier fixed slab track systems can be accommodated. This study firstly demonstrates a novel and resilient alterative by incorporating steel-concrete composite slab theory and combines the capabilities of being precast and modulated, in order to reduce the depth, weight and required installation time relative to conventional concrete direct-fixation track slab systems. Clear benefits of the new steel-concrete composites are the maintainability and constructability, especially for existing railway bridges (or brown fields). Critical considerations in the design and finite element modelling for performance benchmarking of composite structures and their failure modes are highlighted in this paper, altogether with risks, compatibilities and compliances.

Analysis of composite girders with hybrid GFRP hat-shape sections and concrete slab

  • Alizadeh, Elham;Dehestani, Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.54 no.6
    • /
    • pp.1135-1152
    • /
    • 2015
  • Most of current bridge decks are made of reinforced concrete and often deteriorate at a relatively rapid rate in operational environments. The quick deterioration of the deck often impacts other critical components of the bridge. Another disadvantage of the concrete deck is its high weight in long-span bridges. Therefore, it is essential to examine new materials and innovative designs using hybrid system consisting conventional materials such as concrete and steel with FRP plates which is also known as composite deck. Since these decks are relatively new, so it would be useful to evaluate their performances in more details. The present study is dedicated to Hat-Shape composite girder with concrete slab. The structural performance of girder was evaluated with nonlinear finite element method by using ABAQUS and numerical results have been compared with experimental results of other researches. After ensuring the validity of numerical modeling of composite deck, parametric studies have been conducted; such as investigating the effects of constituent properties by changing the compressive strength of concrete slab and Elasticity modulus of GFRP materials. The efficacy of the GFRP box girders has been studied by changing GFRP material to steel and aluminum. In addition, the effect of Cross-Sectional Configuration has been evaluated. It was found that the behavior of this type of composite girders can be studied with numerical methods without carrying out costly experiments. The material properties can be modified to improve ultimate load capacity of the composite girder. strength-to-weight ratio of the girder increased by changing the GFRP material to aluminum and ultimate load capacity enhanced by deformation of composite girder cross-section.

Artificial neural network model for the strength prediction of fully restrained RC slabs subjected to membrane action

  • Hossain, Khandaker M.A.;Lachemi, Mohamed;Easa, Said M.
    • Computers and Concrete
    • /
    • v.3 no.6
    • /
    • pp.439-454
    • /
    • 2006
  • This paper develops an artificial neural network (ANN) model for uniformly loaded restrained reinforced concrete (RC) slabs incorporating membrane action. The development of membrane action in RC slabs restrained against lateral displacements at the edges in buildings and bridge structures significantly increases their load carrying capacity. The benefits of compressive membrane action are usually not taken into account in currently available design methods based on yield-line theory. By extending the existing knowledge of compressive membrane action, it is possible to design slabs in building and bridge decks economically with less than normal reinforcement. The processes involved in the development of ANN model such as the creation of a database of test results from previous research studies, the selection of architecture of the network from extensive trial and error procedure, and the training and performance validation of the model are presented. The ANN model was found to predict accurately the ultimate strength of fully restrained RC slabs. The model also was able to incorporate strength enhancement of RC slabs due to membrane action as confirmed from a comparative study of experimental and yield line-based predictions. Practical applications of the developed ANN model in the design process of RC slabs are also highlighted.

Simple Method of Analysis for Concrete Slab Bridges by the Specially Orthotropic Laminates Theory (특별직교이방성 적층판이론에 의한 콘크리트 슬래브교량의 간편해석법)

  • Han, Bong-Koo;Suck, Jun-Ho
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.2
    • /
    • pp.59-65
    • /
    • 2010
  • The simple supported reinforced concrete slab bridges are analyzed by the specially orthotropic laminates theory. This method, however, may be too difficult for some practising engineers. In this paper, the result of analysis for such plate by means of the beam theory with unit width is reported. By using the "correction factor", the accurate solution for the plate can be obtained by the beam theory. By using the "correction factor", the accurate solution for the plate can be obtained by the beam theory. The plate aspect ratio considered is from 1 : 1 to 1 : 6. The result of this paper can be used for simply supported slab bridges analysis.

  • PDF

Development of strut-and-tie model and design guidelines for improved joint in decked bulb-tee bridge

  • Li, Lungui;He, Zhiqi;Ma, Zhongguo John;Yao, Lingkan
    • Structural Engineering and Mechanics
    • /
    • v.48 no.2
    • /
    • pp.221-239
    • /
    • 2013
  • This paper focuses on a development of strut-and-tie model (STM) to predict the capacity of an improved longitudinal joint for decked bulb-tee bridge systems. Nine reinforced concrete beam/slab specimens anchored by spliced headed bars with different details were tested. Test results were evaluated and compared with an anticipation of the validated STM. The proposed STM provides a lower bound of the ultimate capacity of the joint zone. It shows that the lap length of headed bars has a significant effect on structural behaviors of the improved joint. To develop a full strength joint, the range of the lap length can be determined by the strength and compatibility requirement. Design recommendations to spliced headed bars, concrete strength, as well as lacer bars in the joint zone are proposed for developing a full strength joint.

Mechanical behavior of stud shear connectors embedded in HFRC

  • He, Yu-Liang;Wu, Xu-Dong;Xiang, Yi-Qiang;Wang, Yu-Hang;Liu, Li-Si;He, Zhi-Hai
    • Steel and Composite Structures
    • /
    • v.24 no.2
    • /
    • pp.177-189
    • /
    • 2017
  • Hybrid-fiber reinforced concrete (HFRC) may provide much higher tensile and flexural strengths, tensile ductility, and flexural toughness than normal concrete (NC). HFRC slab has outstanding advantages for use as a composite bridge potential deck slab owing to higher tensile strength, ductility and crack resistance. However, there is little information on shear connector associated with HFRC slabs. To investigate the mechanical behavior of the stud shear connectors embedded in HFRC slab, 14 push-out tests (five batches) in HFRC and NC were conducted. It was found that the stud shear connector embedded in HFRC had a better ductility, higher stiffness and a slightly larger shear bearing capacity than those in NC. The experimentally obtained ultimate resistances of the stud shear connectors were also compared against the equations provided by GB50017 2003, ACI 318-112011, AISC 2011, AASHTO LRFD 2010, PCI 2004, and EN 1994-1-1 (2004), and an empirical equation to predict the ultimate shear connector resistance considering the effect of the HFRC slabs was proposed and validated by the experimental data. Curve fitting was performed to find fitting parameters for all tested specimens and idealized load-slip models were obtained for the specimens with HFRC slabs.

Wheel Load Distribution of Simply Supported Reinforced Concrete Slab Bridge (철근콘크리트 단순 슬래브 교량의 윤하중분포폭에 관한 연구)

  • 오병환;신호상;한승환
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.3
    • /
    • pp.125-134
    • /
    • 1998
  • 최근에 수행된 일련의 철근콘크리트 슬래브 교량의 파괴시험의 결과 비록 교량의 노후화되었다 하더라도 내하력은 설계하중보다 더 크게 나타나고 있다. 본 연구에서는 철근콘크리트 슬래브 교량의 이런 높은 내하능력을 보이는 여러 가지 원인들 가운데 가장 큰 영향을 줄 것으로 예상되는 슬래브 교량의 하중분배거동에 대한 연구를 수행하였다. 철근콘크리트 슬래브 교량의 윤하중분포폭에 영향을 미치는 주요 변수들에는 지간길이, 교량폭, 단부보, 하중형태 및 지점조건이 있다. 본 연구결과에 의하면 지간길이와 교폭에 따라 현행의 윤하중분포폭은 과소 혹은 과대 평가되고 있다. 이들 각 변수들에 대한 포괄적인 유한요소 해석과 분석을 통하여 철근콘크리트 슬래브 교량의 윤하중분포폭을 도출하였고 이들 결과들을 비선형 회귀분석을 통하여 슬래브 교량의 윤하중분포폭의 예측 및 설계식을 제안하였다. 본 연구에서 제안된 윤하중분포폭의 식은 철근콘크리트 슬래브 교량의 보다 정확한 설계 및 합리적인 내하력 산정시 매우 효율적으로 사용될 것으로 사료된다.

Bridge Superstructures Design by Special Othotropic Plate Theory (특별직교 이방성 판 이론에 의한 교랑 상부구조 설계)

  • Kim, Dun-Hyun;Han, Bong-Koo;Lim, Tae-Ho;Oh, Sang-Sub
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.171-174
    • /
    • 2003
  • The Special orthotropic plate theory is used for analysis of panels made of steel girders and cross-beams, and made of reinforced concrete. The cross-sections of girders and cross-beams are WF types. The result is compared with that of the beam theory. According to the numerical examination given in this paper, the result by the plate theory is 2.43 times stiffer than that of beam theory, The result for the concrete slab in given for the practicing engineers.

  • PDF

Analytical Models for the Prediction of the Flexural Behavior for Thermal Bridge Breaker Systems embedded in Reinforced Concrete Slabs (열교차단장치가 적용된 철근 콘크리트 슬래브의 휨거동 예측을 위한 해석모델)

  • Shin, Dong-Hyeon;Kim, Hyung-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.3
    • /
    • pp.325-333
    • /
    • 2015
  • Recently, thermal bridge breaker systems(TBBSs) applicable to RC slab-wall connections have been increasingly studied and proposed. This study also aims at proposing an analytic model which is applicable to predicting the flexural behavior of TBBS embedded in slabs from the initial elastic stages, yield states to ultimate conditions. The analytic models are developed by considering strain compatibility, force equilibrium and the constitutive law obtained from material test results. To verify the accuracy of the proposed analytic model, the moment-curvature relationship and change of neutral axis according to the loading states are compared with those of experimental results. Based on the comparison, it is verified that the proposed analytic model provides well predict the flexural behavior of TBBS embedded in slabs.