• 제목/요약/키워드: Reinforced Concrete (RC) Wall

검색결과 241건 처리시간 0.022초

Cyclic load experiment study on the laminated composite RC walls with different concrete ages

  • Zhang, Hongmei;Lua, Xilin;Li, Jianbao;Liang, Lin
    • Structural Engineering and Mechanics
    • /
    • 제36권6호
    • /
    • pp.745-758
    • /
    • 2010
  • 12 typical laminated composite reinforced concrete (RC) walls with different concrete ages and 3 cast-in-place RC walls subjected to low frequency cyclic load were carried out in this study. The failure mode, force-deformation response and energy dissipation capacity of these specimens were investigated. Differences of structural behaviours between composite RC walls and common cast-in-place RC walls were emphasized in the analysis. The compatibility of the composite specimens with different concrete ages was discussed based on the experiment. Test results indicated that the differences between the lateral bearing capacity and the displacement ductility of the composite walls and the common walls were not so obvious. Some of the composite specimen even has higher bearing capacity under the experiment loading situation. Besides, the two parts of the laminated composite specimens demonstrates incompatibility at the later loading sequence on failure mode and strain response when it is in tension. Finally, this laminated composite shear walls are suggested to be applied in rapid reconstruction structures which is not very high.

Behavior of UHPC-RW-RC wall panel under various temperature and humidity conditions

  • Wu, Xiangguo;Yu, Shiyuan;Tao, Xiaokun;Chen, Baochun;Liu, Hui;Yang, Ming;Kang, Thomas H.K.
    • Advances in concrete construction
    • /
    • 제9권5호
    • /
    • pp.459-467
    • /
    • 2020
  • Mechanical and thermal properties of composite sandwich wall panels are affected by changes in their external environment. Humidity and temperature changes induce stress on wall panels and their core connectors. Under the action of ambient temperature, temperature on the outer layer of the wall panel changes greatly, while that on the inner layer only changes slightly. As a result, stress concentration exists at the intersection of the connector and the wall blade. In this paper, temperature field and stress field distribution of UHPC-RW-RC (Ultra-High Performance Concrete - Rock Wool - Reinforced Concrete) wall panel under high temperature-sprinkling and heating-freezing conditions were investigated by using the general finite element software ABAQUS. Additionally, design of the connection between the wall panel and the main structure is proposed. Findings may serve as a scientific reference for design of high performance composite sandwich wall panels.

Energy demands in reinforced concrete wall piers coupled by buckling restrained braces subjected to near-fault earthquake

  • Beiraghi, Hamid
    • Steel and Composite Structures
    • /
    • 제27권6호
    • /
    • pp.703-716
    • /
    • 2018
  • In this study, the different energy demands in reinforced concrete (RC) wall piers, coupled by buckling restrained braces (BRBs), are investigated. As well as this, a single plastic hinge approach (SPH) and an extended plastic hinge (EPH) approach is considered for the wall piers. In the SPH approach, plasticity can extend only in the 0.1H adjacent to the wall base while, in the EPH approach, the plasticity can extend anywhere in the wall. The seismic behavior of 10-, 20- and 30-storey structures, subjected to near-fault (NF) as well as far-fault (FF) earthquakes, is studied with respect to the energy concepts involved in each storey. Different kinds of energy, including inelastic, damping, kinetic, elastic and total input energy demand, are investigated. The energy contribution from the wall piers, as well as the BRBs in each model, are studied. On average, for EPH approach, the inelastic demand portion pertaining to the BRBs for NF and FF records, is more than 60 and 80%, respectively. In the SPH approach, these ratios are 77 and 90% for the NF and FF events, respectively. It appears that utilizing the BRBs as energy dissipation members between two wall piers is an efficient concept.

주기하중을 받는 철근 콘크리트 소성 모델 (Plasticity Model of RC under Cyclic Load)

  • 박홍근;강수민;신영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.451-454
    • /
    • 1999
  • An existing plasticity model using multiple failure criteria is modified to describe the behavior of reinforced concrete planar members under cyclic load. Multiple failure criteria are used to define both isotropic damage of compressive crushing and anisotropic damage of tensile cracking. A numerical method is developed to define multi-directional and non-orthogonal crack directions. The material model is implemented in the finite element analysis and verified by comparison with existing experiments of reinforced concrete shear wall.

  • PDF

Structural behavior of concrete walls reinforced with ferrocement laminates

  • Shaheen, Yousry B.I.;Refat, Hala M.;Mahmoud, Ashraf M.
    • Structural Engineering and Mechanics
    • /
    • 제78권4호
    • /
    • pp.455-471
    • /
    • 2021
  • The present work focuses on experimental and numerical performance of the ferrocement RC walls reinforced with welded steel mesh, expanded steel mesh, fiber glass mesh and tensar mesh individually. The experimental program comprised twelve RC walls having the dimensions of 450 mm×100 mm×1000 mm under concentric compression loadings. The studied variables are the type of reinforcing materials, the number of mesh layers and volume fraction of reinforcement. The main aim is to assess the influence of engaging the new inventive materials in reinforcing the composite RC walls. Non-linear finite element analysis; (NLFEA) was carried out to simulate the behavior of the composite walls employing ANSYS-10.0 Software. Parametric study is also demonstrated to check out the variables that can mainly influence the mechanical behavior of the model such as the change of wall dimensions. The obtained numerical results indicated the acceptable accuracy of FE simulations in the estimation of experimental values. In addition, the strength gained of specimens reinforced with welded steel mesh was higher by amount 40% compared with those reinforced with expanded steel mesh. Ferrocement specimens tested under axial compression loadings exhibit superior ultimate loads and energy absorbing capacity compared to the conventional reinforced concrete one.

Numerical evaluation of FRP composite retrofitted reinforced concrete wall subjected to blast load

  • Nam, Jin-Won;Yoon, In-Seok;Yi, Seong-Tae
    • Computers and Concrete
    • /
    • 제17권2호
    • /
    • pp.215-225
    • /
    • 2016
  • High performance materials such as Fiber Reinforced Plastic (FRP) are often used for retrofitting structures against blast loads due to its ductility and strength. The effectiveness of retrofit materials needs to be precisely evaluated for the retrofitting design based on the dynamic material responses under blast loads. In this study, the blast resistance of Carbon Fiber Reinforced Plastic (CFRP) and Kevlar/Glass hybrid fabric (K/G) retrofitted reinforced concrete (RC) wall is analyzed by using the explicit analysis code LS-DYNA, which accommodates the high-strain rate dependent material models. Also, the retrofit effectiveness of FRP fabrics is evaluated by comparing the analysis results for non-retrofitted and retrofitted walls. The verification of the analysis is performed through comparisons with the previous experimental results.

A study of the infill wall of the RC frame using a quasi-static pushover analysis

  • Mo Shi;Yeol Choi;Sanggoo Kang
    • Computers and Concrete
    • /
    • 제32권5호
    • /
    • pp.455-464
    • /
    • 2023
  • Seismologists now suggest that the earth has entered an active seismic period; many earthquake-related events are occurring globally. Consequently, numerous casualties, as well as economic losses due to earthquakes, have been reported in recent years. Primarily, significant and colossal damage occurs in reinforced concrete (RC) buildings with masonry infill wall systems, and the construction of these types of structures have increased worldwide. According to a report from the Ministry of Education in the Republic of Korea, many buildings were built with RC frames with masonry infill walls in the Republic of Korea during the 1980s. For years, most structures of this type have been school buildings, and since the Pohang earthquake in 2017, the government of the Republic of Korea has paid close attention to this social event and focused on damage from earthquakes. From a long-term research perspective, damage from structural collapse due to the short column effect has been a major concern, specifically because the RC frame with a masonry infill wall system is the typical form of structure for school buildings. Therefore, the short column effect has recently been a major topic for research. This study compares one RC frame with four different types of RC frames with masonry infill wall systems. Structural damage due to the short column effect is clearly analyzed, as the result of this research is giving in a higher infill wall system produces a greater shear force on the connecting point between the infill wall system and the column. The study is expected to be a useful reference for research on the short column effect in RC frames with masonry infill wall systems.

비선형 동적해석을 이용한 소규모 필로티형 철근콘크리트 건축물의 내진성능평가 (Seismic Performance Evaluation of Small-size Pilloti-type Reinforced Concrete Buildings using Nonlinear Dynamic Analysis)

  • 유창환;김태완;추유림
    • 한국지진공학회논문집
    • /
    • 제20권4호
    • /
    • pp.191-199
    • /
    • 2016
  • Piloti-type building is one of typical vertical atypical buildings. These buildings can fail by weak-story or flexible-story mechanism on the first story. They should be designed by taking into account the special seismic load, but those less than six stories are not required to confirm the seismic performance from structural engineers in Korea. For this reason, small-size pilloti-type RC buildings need to be checked for seismic performance. Based on this background, this study performed nonlinear dynamic analysis using the PERFORM-3D for small-size pilloti-type RC buildings and assessed their seismic performance. Examples are two through four story buildings with and without walls in the first story. The walls and columns in the first story satisfied the target performance in the basic of flexural behavior due to quite a large size and reinforcement. However, wall shear demands exceed shear strength in some buildings. When designed for KBC2009, wall shear strength exceed shear demand in some buildings, but still does not in others. Consequently, wall shear must be carefully checked in both existing and new small-size pilloti-type RC buildings.

철근콘크리트 프레임면내 조적벽체의 골조 구속에 따른 내진성능 평가 및 개선 (Improvement and Evaluation of Seismic Resistant Performance of Reinforced Concrete Infilled Masonry Frame with Restraining Factor of Frame)

  • 신종학;하기주;이희종
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제5권3호
    • /
    • pp.131-139
    • /
    • 2001
  • Experimental programs were accomplished to improve and evaluate the structural performance of RC frame structures with masonry infilled wall, such as the hysteretic behavior, the maximum horizontal strength, crack propagation, and ductility etc. Test variables are restraining factors of frame, with or without masonry infilled wall, and masonry method. Six reinforced concrete rigid frame and masonry infilled wall were tested and constructed in one-third scale size under vertical and cyclic loads simultaneously. Based on the test results, the following conclusions can be made. For masonry infilled wall with restraining factors of frame(IFWB-1~3), cumulated energy dissipation capacities were increased by 1.35~1.60 times in comparision with that of masonry infilled wall(IFB-1) at final stage of testing. For masonry infilled wall with restraining factors of frame, maximum horizontal capacities were increased by 1.91~2.24 times in comparision with that of rigid frame.

  • PDF