• Title/Summary/Keyword: Rehabilitation Engineering

Search Result 1,504, Processing Time 0.029 seconds

The Effects of Oral Activity With Sensory Integration Intervention on Breathing and Oral Diadochokinetic Movement of a Child With Developmental Disability (구강활동을 병행한 감각통합치료가 발달장애 아동의 호흡 및 구강협응능력에 미치는 효과)

  • Choi, Yeon-Woo;Jung, Hye-Rim;Kim, Kyeong-Mi
    • The Journal of Korean Academy of Sensory Integration
    • /
    • v.11 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • Objective : This study was to investigate effects of sensory integration intervention with oral activity on breathing and oral diadochokinetic movement of child with developmental disability. Methods : A subject of this study was 6years and 7month old boy, living in G city which was diagnosed as developmental disability. The study performed from November, 2012 to February, 2013. Research design used in this study is AB design for single-subject research. The experimental period was divided into two phase: 3 sessions for baseline phase (A), 16 sessions for treatment phase (B). There was sensory integration therapy on the baseline phase, and sensory integration intervention with oral activity was conducted on the treatment phase. Breathing measured a Spirometer, oral diadochokinetic movement was measured by measuring the time secondly when repeating "phathakha" ten times. Results : In comparison with the baseline phase, the child's breathing and diadochokinetic movement increased during the treatment phase. Conclusion : Sensory integration intervention with oral activity brought positive results to child's breathing and oral diadochokinetic movement.

  • PDF

Effect of the Short foot Exercise Using an Electromyography Biofeedback on Medial Longitudinal Arch During Static Standing Position (근전도 바이오피드백을 이용한 숏 풋 운동이 정적으로 선 자세 동안 발의 안쪽 세로활 유지에 미치는 영향)

  • Cha, Sang-min;Kang, Min-hyeok;Moon, Dong-chul;Oh, Jae-seop
    • Physical Therapy Korea
    • /
    • v.24 no.1
    • /
    • pp.9-18
    • /
    • 2017
  • Background: Short foot exercise (SFex) is often prescribed and performed in the sport and rehabilitation fields to strengthen intrinsic foot muscles. However, SFex is difficult to perform because of lack of feedback methods. Objects: The aim of this study was to compare the effects of SFex with and without electromyography (EMG) biofeedback on the medial longitudinal arch (MLA) of healthy individuals who maintained a static standing position. Methods: All participants (14 males and 12 females) were randomly divided into two groups (biofeedback and non-biofeedback groups). The EMG activity of the abductor hallucis (AbdH) and tibialis anterior (TA) and the MLA angle on the dominant leg side were measured with the participant in the standing position in the pre- and post-intervention conditions. The intervention session consisted of 15 minutes of SFex with (biofeedback group) or without (non-biofeedback group) EMG biofeedback. The groups were compared using two-way repeated measures analysis of variance. Results: The post-intervention activities of the AbdH muscle (p<.05) and the AbdH/TA ratio (p<.05) were significantly greater in the biofeedback group than in the non-biofeedback group. The activity of the TA (p<.05) and the MLA angle (p<.05) in the biofeedback group were significantly lower in the post-intervention condition than in the pre-intervention condition. Conclusion: The present findings demonstrate that the combination of SFex and EMG biofeedback can effectively facilitate the muscle activity of the AbdH and strengthen the medial longitudinal arch.

Developing a Basic Scale for Workers' Psychological Burden from the Perspective of Occupational Safety and Health

  • Kim, Kyung Woo;Lim, Ho Chan;Park, Jae Hee;Park, Sang Gyu;Park, Ye Jin;Cho, Hm Hak
    • Safety and Health at Work
    • /
    • v.9 no.2
    • /
    • pp.224-231
    • /
    • 2018
  • Background: Organizations are pursing complex and diverse aims to generate higher profits. Many workers experience high work intensity such as workload and work pressure in this organizational environment. Especially, psychological burden is a commonly used term in workplace of Republic of Korea. This study focused on defining the psychological burden from the perspective of occupational safety and health and tried to develop a scale for psychological burden. Methods: The 48 preliminary questionnaire items for psychological burden were prepared by a focus group interview with 16 workers through the Copenhagen Psychosocial Questionnaire II and Mindful Awareness Attention Scale. The preliminary items were surveyed with 572 workers, and exploratory factor analysis, confirmatory factor analysis, and correlation analysis were conducted for a new scale. Results: As a result of the exploratory factor analysis, five factors were extracted: organizational activity, human error, safety and health workload, work attitude, and negative self-management. These factors had significant correlations and reliability, and the stability of the model for validity was confirmed using confirmatory factor analysis. Conclusion: The developed scale for psychological burden can measure workers' psychological burden in relation to safety and health. Despite some limitations, this study has applicability in the workplace, given the relatively small-sized questionnaire.

The Reliability of the K-PEQ(Korean Prosthesis Evaluation Questionnaire) in Lower Extremity Amputees (절단장애인을 위한 한국어 의지평가 설문지의 신뢰도)

  • Seong, Woo-Sung;Kim, Jang-Hwan;Jeong, Dong-Hun
    • Journal of Digital Contents Society
    • /
    • v.19 no.7
    • /
    • pp.1405-1412
    • /
    • 2018
  • Korean-PEQ (prosthesis evaluation questionnaire) was developed and verified its validity research but, evaluating its reliability applied to the lower extremity amputees have not been conducted. The aim of this study was to apply the Korean-PEQ for lower extremity amputees to evaluate the reliability. As a result, all of the items responding of Korean-PEQ shown to less than 15% ceiling effect and floor effect. therefore, the results were shown to be appropriate. Korean-PEQ reliability of each region of intra-class coefficient was shown to .719(95% CI .600~.811)~920(95%CI .890~.945) and the inter-region reliability was higher as 0.958. Item internal consistency Cronbach's ${\alpha}$ values are shown as higher .910.

A METHODOLOGY TO EVALUATE THE EFFECTIVENESS OF REGIONAL SCALE FOR NON-POINT SOURCE LOADS

  • Lee, Ju-Young;Choi, Jae-Young
    • Environmental Engineering Research
    • /
    • v.11 no.4
    • /
    • pp.194-200
    • /
    • 2006
  • Recently, the population growth, industrial and agricultural development are rapidly undergoing in the Lower Rio Grande Valley (LRGV) in Texas. The Lower Rio Grande Valley (LRGV) composed of the 4 counties and three of them are interesting for Non-point and point source pollutant modeling: Starr, Cameron, and Hidalgo. Especially, the LRGV is an intensively irrigation region, and Texas A&M University Agriculture Program and the New Mexico State University College of Agriculture applied irrigation district program, projects in GIS and Hydrology based agricultural water management systems and assessment of prioritized protecting stream network, water quality and rehabilitation based on water saving potential in Rio Grande River. In the LRGV region, where point and non-point sources of pollution may be a big concern, because increasing fertilizers and pesticides use and population cause. This project objective seeks to determine the accumulation of non-point and point source and discuss the main impacts of agriculture and environmental concern with water quality related to pesticides, fertilizer, and nutrients within LRGV region. The GIS technique is widely used and developed for the assessment of non-point source pollution in LRGV region. This project shows the losses in $kg/km^2/yr$ of BOD (Biological Oxygen Demand), TN (total Nitrogen) and TP (total phosphorus) in the runoff from the surface of LRGV. Especially, farmers in Cameron County consume a lot of fertilizer and pesticide to improve crop yield net profit. Then, this region can be created as larger nonpoint source area for nutrients and the intensity of runoff by excess irrigation water. And many sediment and used irrigation water with including high nutrients can be discharged into Rio Grade River.

Significance and Future Direction for Designation and Management of Landslide-Prone Zones (산사태 취약지역 지정·관리 제도의 의의와 향후 과제)

  • Kim, Suk Woo;Chun, Kun Woo;Kim, Kyoung Nam;Kim, Min Sik;Kim, Min Seok;Lee, Sang Ho;Seo, Jung Il
    • Journal of Forest and Environmental Science
    • /
    • v.29 no.3
    • /
    • pp.237-248
    • /
    • 2013
  • The legal basis for the systematic prevention and response to landslide hazards, and the rehabilitation of landslide-hit areas, was established through the amendment of the Forest Protection Act in August 2012. The most noticeable amendment to the Act is the inclusion of clauses associated with the designation and management of landslide-prone zones (including debris flow-prone zones). In this paper, we (1) introduce the clauses related to the designation and management of landslide-prone zones that were included in the amended Forest Protection Act, (2) examine their significance by reviewing the present status of related domestic laws and structural countermeasures such as sediment check dams for sediment-related disaster prevention, and (3) suggest the future directions of the procedure for the designation and cancellation of such zones, and their maintenance and institutional aspects. The establishment of an institutional device for the designation and management of landslide-prone zones has great significance in the aspect of (1) the establishment of a comprehensive management and prevention system for potential landslide-prone zones in forested areas where the hazard risk has been poorly recognized as compared with the flood risks in lowlands, and (2) the establishment of the basis for overcoming the limits of structural countermeasures according to limited budgets. To develop the designation and management system for landslide-prone zones, not only must present problems be addressed, but a cooperation system between the administration and local residents must also be established.

The Effect of Visual Biofeedback on EMG Activity of Trunk Muscles and Endurance Holding Time for Correct Position During Whole-Body Tilt Exercise (전신 기울기 운동 시 시각적 바이오피드백이 올바른 자세 유지 시간과 체간 근육의 근활성도에 미치는 영향)

  • Kang, Min-Hyeok;Yoon, Ji-Yeon;Yang, Jae-Lak;Jang, Jun-Hyeok;Jung, Doh-Heon;Oh, Jae-Seop
    • Physical Therapy Korea
    • /
    • v.18 no.1
    • /
    • pp.9-17
    • /
    • 2011
  • The purpose of this study was to assess visual biofeedback's influence on trunk muscles' (EMG) activity and endurance holding time for correct position during whole-body tilt exercise. For the study, we recruited 14 volunteers who showed no symptom of lumbar disease during medical tests. We measured the EMG activity of their rectus abdominis, external abdominal oblique, internal abdominal oblique and erector spinae muscles, and their endurance holding time for correct position during $40^{\circ}$ anterior and posterior whole-body tilt under two conditions: whole-body tilt with and without visual biofeedback. Resistance with gravitational force on the trunk during whole-body tilt was applied by using a device that had a monitor on which the subjects could check their alignment and that sounded an alarm if a subject's alignment collapsed. The study showed an increase in the EMG activity of external abdominal oblique, internal abdominal oblique/rectus abdominis ratio and endurance holding time for correct position during both $40^{\circ}$ anterior and posterior whole-body tilt with visual biofeedback compared with without visual biofeedback (p<.05). We suggest that the whole-body tilt exercise with visual biofeedback could be a beneficial strategy for selectively strengthening the internal abdominal oblique muscle and minimizing the rectus abdominis muscle's activity while maintaining correct alignment during whole-body tilt exercise.

The Prediction of Debonding Strength on the Reinforced Concrete Beams Strengthened with fiber Reinforced Polymer (섬유복합체로 휨보강된 RC보의 박리하중 예측에 관한 연구)

  • Hong Geon-Ho;Shin Yeong-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.903-910
    • /
    • 2005
  • In recent years, fiber reinforced polymer(FRP) plates have shown a great promise as an alternative to steel plates for reinforced concrete beam rehabilitation. Reinforced concrete beams strengthened with externally bonded FRP sheets to the tension face can exhibit ultimate flexural strengths several times greater than their original strength if their bond strength is enough. Debonding failure, however, may occur before the strengthened beam can achieve its enhanced flexural strength. The purpose of this paper is to investigate the debonding failure strength of FRP-strengthened reinforced concrete beams. An analytical procedure for calculating debonding load between concrete and strengthening FRP is presented. Based on the local bond stress-slip relationship in the previous studies, uniform bond stress is assumed on the effective bond length. The analytical expressions are developed from linear elastic theory and statistical analyses of experimantal results reported in the literature. The proposed method is verified by comparisons with experimental results reported in the previous researches.

Stress analysis according to the different angulation of the implant fixture (임플란트 고정체의 매식 경사에 따른 응력분석)

  • Lee, Tae-Yup;Kang, Dong-Wan
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.18 no.4
    • /
    • pp.321-329
    • /
    • 2002
  • Bending moments results from offset overloading of dental implant, which may cause stress concentrations to exceed the physiological capacity of cortical bone and lead to various kinds of mechanical failures. The purpose of this study was to compare the distributing pattern of stress on the finite element models with the different angulated placement of dental implant in mandibular posterior missing areas. The three kinds of finite element model, were designed according to 3 main configurations: Model 1(parallel typed placement of 2 fixtures), Model 2(15. distal angulated placement of one fixture on second molar area), Model 3(15. mesial angulated placement of one fixture on second molar area). The cemented crowns for mandibular first and second molars were made on the two fixtures (4mm 11.5). Three-dimensional finite element models by two fixtures were constructed with the components of the implant and surrounding bone. A 200N vertical static load were applied to the center of central fossa and the point 2mm apart from the center of central fossa on each model. The preprocessing, solving and postprocessing procedures were done by using FEM analysis software NISA/DISPLAY IV Version 10.0((Engineering Mechanics Research Corporation, USA). Von Mises stresses were evaluated and compared in the supporting bone, fixtures, and abutment. The results were as following : (1) Under the point loading at the central fossa, the direction of angulated fixture affected the stress pattern of implants. (2) Under the offset loading, the position of loading affected more on the stress concentration of implants compare to the angulated direction of implants. The results had a tendency to increase the stress on the supporting bone, fixture and screw under the offset loads when the placement angulation of implant fixture is placed toward mesial or distal direction. In designing of the occlusal scheme for angulated placement, placing the occlusal contacts axially during chewing appears to have advantages in a biomechanical viewpoint.

Normal Walking Versus Toe-walking in Healthy Subjects: An Electromyographic Analysis (정상 보행과 발가락 보행의 하지 근육 근 활성도 비교)

  • Kim, Tack-Hoon;Choi, Houng-Sik;Kim, Chang-In;Yi, Jin-Bock
    • Physical Therapy Korea
    • /
    • v.9 no.2
    • /
    • pp.43-50
    • /
    • 2002
  • This study was designed to identify the effects of walking conditions (normal walking vs. toe-walking) on electromyographic (EMG) activity of gastrocnemius, tibialis anterior, and soleus muscle. Seven healthy adult males participated in this study. The exclusion criteria were orthopedic or neurologic disease, congenital anomaly or acquired deformity, or pain in low back or lower extremities. The maximal voluntary isometric contraction for each muscle was used for the reference contraction, and EMG activity of each muscle during normal walking and toe-walking was expressed as a percentage of reference contraction. The gait cycle was determined with two foot switches, and gait was normalized as 100% gait cycle for each condition. The maximal values of EMG activity in terminal stance (30~50% of gait cycle) of each condition were compared for data analysis. No significant differences were found in EMG activity of the tibialis anterior and soleus (p>.05), whereas significant decrement was found in EMG activity of gastrocnemius during toe-walking compared to normal walking (p<.05). There is a limitation to generalize the results of this study, because small number of subjects participated for this study and only EMG was used for data collection. The treatment methods should be developed to improve gait efficiency by substituting the weakened muscles secondary to upper motor neuron, or by strengthening the distal muscles in lower extremity.

  • PDF