Let (X, Y) be a pair random variables and let f denote the regression function of the response Y on the measurement variable X. Let K(f) denote a derivative of f. The least squares method is used to obtain a tensor spline estimator $\hat{f}$ of f based on a random sample of size n from the distribution of (X, Y). Under some mild conditions, it is shown that $K(\hat{f})$ achieves the optimal rate of convergence for the estimation of K(f) in $L_2$ and $L_{\infty}$ norms.
일반적으로 하이브리드 연소를 모델링 할 경우 고체 연료의 표면 온도를 이용하여 후퇴율을 계산하기 때문에 정확하게 고체연료의 표면온도를 예측하는 것이 필요하다. 따라서 본 연구는 하이브리드 고체 연료에 열전대를 삽입한 후, 연소실험을 통해 연료의 표면 온도를 측정하였고, 본 연구에서의 산화제 유속 범위에서의 고체 연료 표면 온도 변화를 고찰하였다.
This research presents the battery discharge rate models for the energy consumption of mobile phone batteries based on machine learning by taking into account three usage patterns of the phone: the standby state, video playing, and web browsing. We present the experimental design methodology for collecting data, preprocessing, model construction, and parameter selections. The data is collected based on the HTC One X hardware platform. We considered various setting factors, such as Bluetooth, brightness, 3G, GPS, Wi-Fi, and Sync. The battery levels for each possible state vector were measured, and then we constructed the battery prediction model using different regression functions based on the collected data. The accuracy of the constructed models using the multi-layer perceptron (MLP) and the support vector machine (SVM) were compared using varying kernel functions. Various parameters for MLP and SVM were considered. The measurement of prediction efficiency was done by the mean absolute error (MAE) and the root mean squared error (RMSE). The experiments showed that the MLP with linear regression performs well overall, while the SVM with the polynomial kernel function based on the linear regression gives a low MAE and RMSE. As a result, we were able to demonstrate how to apply the derived model to predict the remaining battery charge.
In this paper, we correct pulse wave velocity(PWV) with heart-rate and derive regression equations to estimate intima-media thickness(IMT). Widely used methods for diagnosis of arteriosclerosis are IMT and PWV. Arterial wall stiffness determines the degree of energy absorbed by the elastic aorta and its recoil in diastole but there is not correlation between sclerosis and IMT in an existing study. In this study, we will correct PWV with heart-rate and get regression equation to estimate IMT using heart-rate correction index(HCI). We executed experiments for this study. Made up question of physical condition and measured electrocardiogram(ECG), photoplethysmogram (PPG) of finger-tip and toe-tip and ultrasound image of carotid artery. Calculated PWV and IMT using ECG, PPG and ultrasound image. We found that every p-value between PWV and IMT is not significant(<0.05). But p-value between IMT and HCI which is a corrected PWV using heart-rate is significant(>0.01). We use HCI and various measured parameter for estimating regression equation and apply backward estimation to select parameters for regression analysis. Result of backward estimation, found that only HCI is possible to derive proper regression equation of IMT. Relationship between PWV and IMT is the second order. Result of regression equation of E-H PWV is $R^2$=0.735, adj $R^2$=0.711. This is the best correlation value. We calculate error of its analysis for verification of earlobe PWV regression equation. Its result is RMSEP=0.0328, MAPE(%) = 4.7622. Like this regression analysis, we know that HCI is useful parameter and relationship between PWV, HCI and IMT. In addition, we are able to suggest possibility which is that we can get different parameter of prediction throughout just one measurement.
본 연구는 건국대학교 연소추진 실험실 주관으로 하이브리드 로켓 모터 실험 장치를 구성하고 산화제의 mass flux에 따른 연소율 변화 둥을 측정하여 연소 불안정성에 대해 연구하는 것을 목표로 하고 있다. Test fire를 해본 결과, 실험이 순서대로 원활히 진행되어 연소에 성공하였으며, PC를 이용하여 압력, 추력, 온도 데이터를 받아낼 수 있음을 확인하였다. 진행될 사항은 실험을 통하여 연소율의 비정상적 변화와 연소실 내부의 압력변화특성을 연구하고, 온도를 측정함으로써 C*(특성속도)를 계산하여 하이브리드 모터의 연소 특성이 연구되어야 할 것이다.
Objectives Advanced researches on the relationship between obesity and heart rate variability (HRV), heretofore, focused on characteristics of HRV depending on the state of obesity. However, the previous researches have not quantified predictive power of HRV toward the obesity-related variables, which is rather more meaningful for clinicians who regularly treat obese patients. Hence, we designed a research to investigate whether HRV could predict serum levels of obesity-related metabolites. Methods Ninety obese premenopausal women meeting the inclusion criteria were recruited. The HRV test, blood sampling, and measurement of physical traits were conducted. Multiple regression analysis of the measurement data was carried out, putting obesity-related metabolites (insulin, glucose, triglyceride, hs-CRP, HDL, LDL, total cholesterol) as outcome variables and the others as predictors. To select appropriate predictive variables, the Akaike's Information Criterion (AIC) was applied. Normality and homoskedasticity of residuals for each model were tested to identify if there were any violations of the regression analysis's basic assumption. Logarithm transformation was used for the values of the concentration of metabolites and the HRV. Results The regression model including Total Power (TP) value and BMI had significant predictive power for serum insulin concentration (F(2, 88)=835.7, p<0.001, $R^2=0.95$). The regression coefficient of ln (TP) was -0.1002. However, it was not sure if the HRV could predict concentrations of other metabolites. Conclusions The results suggest that the Total Power (TP) value of the HRV can predict the level of serum insulin. If the BMI could be assumed as being constant, when the TP value is multiplied by n, the predicted change of insulin could be drawn by multiplying $n^{-0.1002}$. The uncertainty of this model can be assumed as approximately 5%.
International Journal of Aeronautical and Space Sciences
/
제11권3호
/
pp.234-239
/
2010
The utilization of micro-electro-mechanical system (MEMS) gyros and accelerometers in low-level inertial measurement unit (IMU) influences cost effectiveness in a positive way under the condition that device error characteristics are fully calibrated. The conventional calibration process utilizes a rate table; however, this paper proposes a new method for achieving reference calibration data from the natural motion of pendulum to which the IMU undergoing calibration is attached. This concept was validated with experimental data. The pendulum angle measurements correlate extremely well with the solutions acquired from the pendulum equation of motion. The calibration data were computed using the regression method. The whole process was validated by comparing the measurement from the 6 sensor components with the measurements reconstructed using the identified calibration data.
Consider an unknown regression function f of the response Y on a d-dimensional measurement variable X. It is assumed that f belongs to a tensor Sobolev space. Let T denote a differential operator. Let $\hat{T}_n$ denote an estimator of T(f) based on a random sample of size n from the distribution of (X, Y), and let $\Vert \hat{T}_n - T(f) \Vert_2$ be the usual $L_2$ norm of the restriction of $\hat{T}_n - T(f)$ to a subset of $R^d$. Under appropriate regularity conditions, the optimal rate of convergence for $\Vert \hat{T}_n - T(f) \Vert_2$ is discussed.
비운송 지중구조물인 전력구와 공동구는 대부분 철근 콘크리트 구조물로서 공용기간이 경과함에 따라 탄산화에 의한 열화로 내구성이 저하된다. 특히, 전력구 및 공동구는 용도별, 지역별로 탄산화 속도가 상이하므로 개별적인 유지관리를 위해서는 탄산화 실측 데이터에 기반한 예측 모델이 요구된다. 본 연구에서는 노후화 된 전력구 및 공동구와 같이 기존 비운송 지중구조물에 대한 탄산화 예측 모델을 개발하였다. 탄산화 예측 모델 개발을 위해 안전점검에서 확보한 실측 데이터를 기반으로 다중회귀분석 및 심층신경망 기법을 활용하였다. 다중회귀분석에서 종속 변수인 탄산화 속도계수 결정을 위해 독립 변수로서 구조물, 지역, 측정 위치, 시공 유형, 측정 부재, 콘크리트 강도를 선정하였으며, 다중회귀 예측 모델의 수정결정계수(Ra2)는 0.67로 분석되었다. 심층신경망을 이용한 비운송 지중구조물의 탄산화 예측 모델결정계수(R2)는 0.82로 나타났으며, 비교대상 모델보다 우수한 예측 성능을 보였다. 심층신경망을 이용한 비운송 지중구조물의 탄산화 예측 모델은 콘크리트 강도에 기초한 것으로, 본 연구의 결과가 노후화 된 전력구 및 공동구에 대한 탄산화 유지보수 최적 시기 결정 및 예방적 유지관리 방법론에 기여되길 기대한다.
The 3th International Conference on Construction Engineering and Project Management
/
pp.1140-1147
/
2009
Productivity measurement of construction machinery is a significant issue faced by many contractors especially those involved in earthwork projects. Traditionally, equipment production rate has been estimated using data available in manufacturers' catalogues, results of previous construction projects, or personal experience and assessments of the site personnel. Actual production rates obtained after the completion of a project demonstrate the fact that most of these methods fail to provide accurate results and as a direct consequence, may lead to unrealistic project cost estimations prepared by the contractors. What makes this more critical is that in most cases, inadequate cost estimations lead the entire project to exceed the initial budget or fall behind the schedule. In this paper, a linear regression method to estimate bulldozer productivity is introduced. This method has been developed using SPSS-16 software package. The presented method is used to estimate the productivity of Komatsu D-155A1 series which is commonly used in many earthmoving operations in Iran. The data required for the numerical analysis has been collected from actual site observation and productivity measurement of 60 pieces of D-155A1 series currently being used in several earthmoving projects in Iran. Comparative analysis of the output data of the presented regression method and the existing productivity tables provided by the manufacturer shows that when compared to the actual productivity data collected on the jobsite, a significant increase in accuracy and a remarkable reduction of data variance can be achieved by using the presented regression method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.