• Title/Summary/Keyword: Regional warming

Search Result 158, Processing Time 0.016 seconds

The Impact of Regional Warming On the Ozone Concentration According to the Differences in Meteorological Contribution in Each City over the South-Eastern Part of the Korean Peninsula (기후변화에 따른 도시별 기상기여도 차이가 고농도 오존분포에 미치는 영향)

  • Jeong, Yeo-Min;Lee, Hwa-Woon;Choi, Hyun-Jung
    • Journal of Environmental Science International
    • /
    • v.20 no.3
    • /
    • pp.405-416
    • /
    • 2011
  • In order to clarify the impact of regional warming on the ozone concentration according to the differences in meteorological contribution in each city over the South-Eastern part of the Korean Peninsula, several numerical experiments were carried out. WRF - CMAQ model was used to access the ozone differences in each case, during the episode day. Meteorological contributions estimated by WRF command a reasonable feature on the dispersion of ozone concentrations in each city according to regional warming. This causes a difference in estimated ozone concentration. A higher ozone concentration difference tend to be forecasted in coastal cities than in upcountry city. Therefore, the emission reduction policy according to the regional warming should consider the characteristics of meteorological contribution of each city.

Long-term Trends of Daily Maximum and Minimum Temperatures for the Major Cities of South Korea and their Implications on Human Health (한국의 주요 대도시에 대한 일 최고 및 최저 기온의 장기변동 경향과 건강에 미치는 영향 전망)

  • Choi, Byoung-Cheol;Kim, Jiyoung;Lee, Dae-Geun;Kysely, Jan
    • Atmosphere
    • /
    • v.17 no.2
    • /
    • pp.171-183
    • /
    • 2007
  • Trends of daily maximum and minimum temperatures in major cities of South Korea (Seoul, Busan, Incheon, Daegu, and Ulsan) during the past 40 years (1961-2000) were investigated. Temperature records for the Chupungryeong station were compared with those of the large cities because of the rural environment of the station. There were distinct warming trends at all stations, although the warming rates depend on each station's local climate and environment. The warming rates in Korea are much greater than the global warming trends, by a factor of 3 to 4. The most increasing rate in daily maximum temperature was at Busan with $0.43^{\circ}C$ per decade, the most increasing rate in daily minimum temperature was at Daegu with $0.44^{\circ}C$ per decade. In general, the warming trends of the cities were most pronounced in winter season with an increasing rate of $0.5^{\circ}C$/decade at least. Diurnal temperature range shows positive or negative trends according to the regional climate and environmental change. The frequency distribution of the daily temperatures for the past 40 years at Seoul and Chupungryeong shows that there have been reductions in cold day frequencies at both stations. The results imply that the impacts on human health might be positive in winter and adverse in summer if the regional warming scenario by the current regional climate model reflects future climate change in Korea.

On the Drought over Korea using the regional climate change simulation (지역 기후 변화 모의 자료를 이용한 한반도 가뭄 지수 분석)

  • Boo, Kyung-On;Kwon, Won-Tae;Baek, Hee-Jeong;Oh, Jai-Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.875-877
    • /
    • 2004
  • We analyze the changes of the Palmer Drought Severity Index (PDSI) over Korea to assess the regional climate change associated with global warming. For the regional-scale analysis, we used the MM5 simulation in 27 km horizontal resolution for the period of 1971-2100, which is driven by ECHAM4/HOPE-G under the greenhouse gas omission scenario. The downscaled climate variables capture improved regional features consistent with the observation. Based on the simulation, we investigated the temporal and spatial distributions of PDSI over Korea. The area-averaged PDSI is expected to decrease in global warming. Considering the horizontal distribution of climate change, the negative peak values of PDSI anomalies appear in the southern part of Korea.

  • PDF

Numerical Study on the Impact of Regional Warming on the Meterological Field and Ozone Concentration over the South-Eastern Part of the Korean Peninsula (기후변화에 따른 기온상승이 한반도 동남지역 국지 기상장과 오존 분포에 미치는 영향에 관한 수치모의)

  • Jeong, Yeo-Min;Lee, Hwa-Woon;Lee, Soon-Hwan;Choi, Hyun-Jung;Jeon, Won-Bae
    • Journal of Environmental Science International
    • /
    • v.19 no.12
    • /
    • pp.1431-1445
    • /
    • 2010
  • In order to clarify the impact of regional warming on the meteorological field and air quality over southeastern part of Korean Peninsula, several numerical experiment were carried out. Numerical models used in this study are WRF for the estimate the meteorological elements and CMAQ for assessment of ozone concentration. According to the global warming impact, initial air temperature were changed and its warming rate reach at 2 degree which was based on the global warming scenarios provided by IPCC. The experiments considering the global warming at initial stage were presented as case T_UP. Air temperature over inland area during night time for case T_UP is higher than that for Base case. During time since the higher temperature over inland area is maintained during daytime more intensified sea breeze should be induced and also decrease the air temperature in vicinity of coast area. In case of T_UP, high level concentrations ozone distribution area was narrowed and their disappearance were faster after 1800LST. As a results, wind and temperature fields due to the global warming at initial stage mainly results in the pattern of ozone concentration and its temporal variation at South-Eastern Part of the Korean Peninsula.

Effect of SRI Water Management on the Reduction of Greenhouse-gas Emissions and Irrigation Water Supply in Paddy (논에서 SRI 물관리 방법에 의한 온실가스와 관개용수 저감효과 분석)

  • Seo, Jiyeon;Park, Baekyung;Park, Woonji;Lee, Suin;Choi, Yonghun;Shin, Minhwan;Choi, Joongdae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.1
    • /
    • pp.79-87
    • /
    • 2018
  • Water management impacts both methane ($CH_4$) and nitrous oxide ($N_2O$) emissions from rice paddy fields. Although irrigation is one of the most important methods for reducing $CH_4$ emission in rice production systems it can also $N_2O$ emissions and reduce crop yields. A feasibility study on the system of rice intensification (SRI) methods with respect to irrigation requirements, greenhouse gas (GHG) emissions was conducted for either 2 or 3 years depending on the treatment in Korea. The SRI methods (i.e. SRI and midsummer drainage (MD) with conventional practice (CT)) reduced the irrigation requirement by 49.0 and 22.0 %, respectively. Global warming contribution of GHG to different depending on the type of GHG. Therefore, the emission of $CH_4$ and $N_2O$ shall be converted to Global Warming Potential (GWP). The GHG emission from the conventional practice with midsummer drainage (MD) and the SRI plots, in GWP were reduced by 49.1 and 77.1 %, respectively. Application of SRI water management method could help to improve Korea's water resources and could thus contribute to mitigation of the negative effects of global warming.

A Study on the Air Temperature Changes and Regional Characteristics in South Korea (우리나라 지역별 기온변화 특성)

  • Kim, Tae Ryong
    • Journal of Integrative Natural Science
    • /
    • v.2 no.2
    • /
    • pp.131-167
    • /
    • 2009
  • Global warming is regarded as one of the most critical issues that should be taken care of by the entire global community as it threatens the survival of mankind. South Korea, in particular, undergoes faster warming than the average rate of global warming. South Korea has revealed various warming rates and trends being surrounded by sea on three sides and having complex terrains dominated by mountains. The rates vary according to regions and their urbanization and industrialization. Differences also derive from seasons and weather elements. Changes to the highest, mean, and lowest temperature are also different according to the characteristics of regions and observatories, which is more apparent where the force of artificial weather applies. In an urban area, temperature gaps tend to decrease as the lowest temperature rises more than the highest temperature. Meanwhile, temperature gaps grow further in a coastal or country region where the force of artificial weather is small and the force of natural weather prevails. In this study, the investigator analyzed the changes to the weather elements of 11 observation spots that had gone through no changes in terms of observation environment since 1961, were consecutively observed, and had the quality of their observation data monitored on an ongoing basis. Using the results, I tried to identify natural and artificial causes affecting certain spots. Located on the east coast of the Asian Continent, South Korea sees weather changing very dynamically. Having huge influences on our weather, China has achieved very rapid industrialization for the last 30 years and produced more and more greenhouse gases and air pollution due to large-size development projects. All those phenomena affect our weather system in significant ways. Global warming continues due to various reasons with regional change differences. Thus the analysis results of the study will hopefully serve as basic data of weather statistics with which to set up countermeasures against climate changes.

  • PDF

Future Extreme Temperature and Precipitation Mechanisms over the Korean Peninsula Using a Regional Climate Model Simulation

  • Lee, Hyomee;Moon, Byung-Kwon;Wie, Jieun
    • Journal of the Korean earth science society
    • /
    • v.39 no.4
    • /
    • pp.327-341
    • /
    • 2018
  • Extreme temperatures and precipitations are expected to be more frequently occurring due to the ongoing global warming over the Korean Peninsula. However, few studies have analyzed the synoptic weather patterns associated with extreme events in a warming world. Here, the atmospheric patterns related to future extreme events are first analyzed using the HadGEM3-RA regional climate model. Simulations showed that the variability of temperature and precipitation will increase in the future (2051-2100) compared to the present (1981-2005), accompanying the more frequent occurrence of extreme events. Warm advection from East China and lower latitudes, a stagnant anticyclone, and local foehn wind are responsible for the extreme temperature (daily T>$38^{\circ}C$) episodes in Korea. The extreme precipitation cases (>$500mm\;day^{-1}$) were mainly caused by mid-latitude cyclones approaching the Korean Peninsula, along with the enhanced Changma front by supplying water vapor into the East China Sea. These future synoptic-scale features are similar to those of present extreme events. Therefore, our results suggest that, in order to accurately understand future extreme events, we should consider not only the effects of anthropogenic greenhouse gases or aerosol increases, but also small-scale topographic conditions and the internal variations of climate systems.

Development of the Assessment Framework for the Environmental Impacts in Construction

  • Tahoon Hong;Changwoon Ji;Kwangbok Jeong;Joowan Park
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.196-203
    • /
    • 2013
  • Environmental problems like global warming have now become important issues that should be considered in all industries, including construction. In South Korea, many studies have been conducted to achieve the government's goals of reduction in environmental impacts. However, the research on buildings has only focused on CO2 emission as a research target despite the fact that other environmental impacts resulting from ozone depletion and acidification should also be considered, in addition to global warming. In this regard, this study attempted to propose assessment criteria and methods to evaluate the environmental performance of the structures from various aspects. The environmental impact category can be divided into global impacts, regional impacts, and local impacts. First, global impacts include global warming, ozone layer depletion, and abiotic resource depletion, while regional impacts include acidification, eutrophication, and photochemical oxidation. In addition, noise and vibration occurring in the building construction phase are defined as local impacts. The evaluation methods on the eight environmental impacts will be proposed after analyzing existing studies, and the methods representing each environmental load as monetary value will be presented. The methods presented in this study will present benefits that can be obtained through green buildings with a clear quantitative assessment on structures. Ultimately, it is expected that if the effects of green buildings are clearly presented through the findings of this study, the greening of structures will be actively expanded.

  • PDF

A Review of Regional Climate Change in East-Asia and the Korean Peninsula Based on Global and Regional Climate Modeling Researches (전구 및 지역기후 모델 결과에 근거한 동아시아 및 한반도 지역기후 변화 전망 연구 소개 및 고찰)

  • Hong, Song You;Kwon, Won Tae;Chung, Il Ung;Baek, Hee Jeong;Byun, Young Hwa;Cha, Dong Hyun
    • Journal of Climate Change Research
    • /
    • v.2 no.4
    • /
    • pp.269-281
    • /
    • 2011
  • In this review, numerical model results from global and regional climate models are introduced to regional detailed climate changes over East Asia and Korea. In particular, regional climate change scenarios in this region, which are created by several research groups in Korea based on Special Report on Emissions Scenarios (SRES) of IPCC 4th assessment report are introduced and characteristics of the scenarios are investigated. Despite slight differences in intensity, all scenarios reveal prominent warming over the Korean peninsula in future climate. Changes in precipitation amount vary with given scenarios and periods, but the frequency and intensity of heavy precipitation generally tend to increase in all scenarios. South Korea except for mountainous regions is expected to change into subtropical climate in future, which accompanies distinct changes in ecosystems and seasons.

Change of Regional Atmospheric Circulation Related with Recent Warming in the Antarctic Peninsula (남극반도의 최근 온난화와 관련된 지역적 대기순환의 변화)

  • Lee, Jeong-Soon;Kwon, Tae-Yong;Lee, Bang-Yong;Yoon, Ho-Il;Kim, Jeong-Woo
    • Ocean and Polar Research
    • /
    • v.25 no.4
    • /
    • pp.503-518
    • /
    • 2003
  • This study examines the relationship among temperature, wind, and sea level pressure to understand recent warming in the vicinity of the Antarctic Peninsula. To do this, the surface air temperature, NCEP/NCAR reanalysis wind data and sea level pressure data for the period of 40 years are analyzed. The 40-year surface air temperature data in the Antarctic Peninsula reveals relatively the larger warming trends for autumn and winter than other seasons. The variability of the surface air temperature in this region is compared with that of the regional atmospheric circulation. The surface air temperature is positively correlated with frequency of northwesterlies and negatively correlated with frequency of southeasterlies. This relation is more evident in the northern tip of the Antarctic Peninsula for autumn and winter. The trend analysis of wind frequency in the study area shows increasing and decreasing trends in the frequency of northwesterlies and southeasterlies, respectively, in the northwestern part of the Weddell Sea for autumn and winter. And also it is found that these winds are closely related with decreasing of sea level pressure in the southeastern region of the Antarctic Peninsula. Furthermore from the seasonal variation of sea level pressure in this area, it may be presumed that decreasing of sea level pressure in the southeastern region of the Antarctic Peninsula is related with warming in the vicinity of the Antarctic Peninsula for autumn and winter. Therefore it can be explained that recent warming in the vicinity of the Antarctic Peninsula is caused by positive feedback mechanism, that is, the process that warming in the vicinity of the Antarctic Peninsula can lead to the decrease of sea level pressure in the southeastern region of the Antarctic Peninsula and these pressure decrease in turn lead to the variation of wind direction in northwestern part of Weddell Sea, again the variation of wind direction enhances the warming in the Antarctic Peninsula.