• Title/Summary/Keyword: Regional prediction

Search Result 512, Processing Time 0.038 seconds

Effective Coastal Water Quality Management and Marine Environmental Impact Assessment (연안의 효율적 수질관리 방향과 해양환경영향평가)

  • Lee, Dae-In;Eom, Ki-Hyuk;Kim, Gui-Young;Hong, Sok-Jin;Lee, Won-Chan;Jang, Ju-Hyoung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.1
    • /
    • pp.29-37
    • /
    • 2008
  • This study examined principles and techniques of efficient water quality management as well as total coastal pollutant loads and the relevant examples in the advanced countries from the viewpoints of water quality improvement and pollution control in coastal areas. The problems and improvements in an estimation of the current total pollutant loads were also pointed out. In addition, discussion was made on the relationship between total pollutant loads and environmental capacity as well as particulars requiring extensive examination on access to and study on water quality model used as prediction tool for marine environment. Furthermore, this study proposed details of and improvement plans for water quality control to be reflected and absorbed into systems and policies related to coastal water quality. In coastal areas, which are subject to total coastal pollutant loads, it is necessary to calculate pollutant loads reduction and allocation, to propose them in detail in statement in relations to new pollution sources for the corresponding projects or plans in environmental impact assessment and prior environmental review system. Also, in relations to regional plans for coastal management, the local government concerned must focus more on environmental management plan to implement data on pollution sources and pollutant loads flown into sea areas under basic jurisdiction, therefore it is required to actively respond to expansion and introduction of total coastal pollutant loads system in the future. Total coastal pollutant loads system must be expanded and executed by considering characteristics of sea area and changes in the environment of land. For pollution sources in land, the competent authorities in charge of coastal environment will need to initiatively administer supervision, monitoring activities and achieve integration and operation of the related laws by preparing legal bases for management system or adjusting the related laws.

  • PDF

Habitat Distribution Change Prediction of Asiatic Black Bears (Ursus thibetanus) Using Maxent Modeling Approach (Maxent 모델을 이용한 반달가슴곰의 서식지 분포변화 예측)

  • Kim, Tae-Geun;Yang, DooHa;Cho, YoungHo;Song, Kyo-Hong;Oh, Jang-Geun
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.3
    • /
    • pp.197-207
    • /
    • 2016
  • This study aims at providing basic data to objectively evaluate the areas suitable for reintroduction of the species of Asiatic black bear (Ursus thibetanus) in order to effectively preserve the Asiatic black bears in the Korean protection areas including national parks, and for the species restoration success. To this end, this study predicted the potential habitats in East Asia, Southeast Asia and India, where there are the records of Asiatic black bears' appearances using the Maxent model and environmental variables related with climate, topography, road and land use. In addition, this study evaluated the effects of the relevant climate and environmental variables. This study also analyzed inhabitation range area suitable for Asiatic black and geographic change according to future climate change. As for the judgment accuracy of the Maxent model widely utilized for habitat distribution research of wildlife for preservation, AUC value was calculated as 0.893 (sd=0.121). This was useful in predicting Asiatic black bears' potential habitat and evaluate the habitat change characteristics according to future climate change. Compare to the distribution map of Asiatic black bears evaluated by IUCN, Habitat suitability by the Maxent model were regionally diverse in extant areas and low in the extinct areas from IUCN map. This can be the result reflecting the regional difference in the environmental conditions where Asiatic black bears inhabit. As for the environment affecting the potential habitat distribution of Asiatic black bears, inhabitation rate was the highest, according to land coverage type, compared to climate, topography and artificial factors like distance from road. Especially, the area of deciduous broadleaf forest was predicted to be preferred, in comparison with other land coverage types. Annual mean precipitation and the precipitation during the driest period were projected to affect more than temperature's annual range, and the inhabitation possibility was higher, as distance was farther from road. The reason is that Asiatic black bears are conjectured to prefer more stable area without human's intervention, as well as prey resource. The inhabitation range was predicted to be expanded gradually to the southern part of India, China's southeast coast and adjacent inland area, and Vietnam, Laos and Malaysia in the eastern coastal areas of Southeast Asia. The following areas are forecast to be the core areas, where Asiatic black bears can inhabit in the Asian region: Jeonnam, Jeonbuk and Gangwon areas in South Korea, Kyushu, Chugoku, Shikoku, Chubu, Kanto and Tohoku's border area in Japan, and Jiangxi, Zhejiang and Fujian border area in China. This study is expected to be used as basic data for the preservation and efficient management of Asiatic black bear's habitat, artificially introduced individual bear's release area selection, and the management of collision zones with humans.

Agro-Climatic Indices Changes over the Korean Peninsula in CO2 Doubled Climate Induced by Atmosphere-Ocean-Land-Ice Coupled General Circulation Model (대기-해양-지면-해빙 접합 대순환 모형으로 모의된 이산화탄소 배증시 한반도 농업기후지수 변화 분석)

  • Ahn, Joong-Bae;Hong, Ja-Young;Shim, Kyo-Moon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.1
    • /
    • pp.11-22
    • /
    • 2010
  • According to IPCC 4th Assessment Report, concentration of carbon dioxide has been increasing by 30% since Industrial Revolution. Most of IPCC $CO_2$ emission scenarios estimate that the concentration will reach up to double of its present level within 100-year if the current tendency continues. The global warming has resulted in the agro-climate change over the Korean Peninsula as well. Accordingly, it is necessary to understand the future agro-climate induced by the increase of greenhouse gases in terms of the agro-climatic indices in the Korean peninsula. In this study, the future climate is simulated by an atmosphere/ocean/land surface/sea ice coupled general circulation climate model, Pusan National University Coupled General Circulation Model(hereafter, PNU CGCM), and by a regional weather prediction model, Weather Research and Forecasting Model(hereafter, WRF) for the purpose of a dynamical downscaling. The changes of the vegetable period and the crop growth period, defined as the total number of days of a year exceeding daily mean temperature of 5 and 10, respectively, have been analyzed. Our results estimate that the beginning date of vegetable and crop growth periods get earlier by 3.7 and 17 days, respectively, in spring under the $CO_2$-doubled climate. In most of the Korean peninsula, the predicted frost days in spring decrease by 10 days. Climatic production index (CPI), which closely represent the productivity of rice, tends to increase in the double $CO_2$ climate. Thus, it is suggested that the future $CO_2$ doubled climate might be favorable for crops due to the decrease of frost days in spring, and increased temperature and insolation during the heading date as we expect from the increased CPI.

Transfer Factor of Heavy Metals from Agricultural Soil to Agricultural Products (농작물 재배지 토양 내 비소, 납 및 카드뮴의 농산물로의 전이계수 산출)

  • Kim, Ji-Young;Lee, Ji-Ho;Kunhikrishnan, Anitha;Kang, Dae-Won;Kim, Min-Ji;Yoo, Ji-Hyock;Kim, Doo Ho;Lee, Young-Ja;Kim, Won Il
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.4
    • /
    • pp.300-307
    • /
    • 2012
  • BACKGROUND: The Transfer Factor (TF) of heavy metals from soil to plant is important, because TF is an indicator of heavy metal in soils and a factor that quantifies bioavailability of heavy metals to agricultural products. This study was conducted to investigate the transfer ability of Arsenic (As), Cadmium (Cd), and Lead (Pb) from soil to agricultural products. METHODS AND RESULTS: We investigated heavy metals (As, Cd and Pb) concentrations in 9 agricultural products (rice, barely, corn, pulse, lettuce, pumpkin, apple, pear, tangerin) and soil. TF of agricultural products was evaluated based on total and HCl-extractable soil concentration of As, Cd, and Pb. Regression analysis was used to predict the relationship of total and HCl-extractable concentration with agricultural product contents of As, Cd, and Pb. The result showed that TF was investigated average 0.006~0.309 (As), 0.002~6.185 (Cd), 0.003~0.602 (Pb). The mean TF value was the highest as rice 0.309 in As, lettuce 6.185, pear 0.717, rice 0.308 in Cd, lettuce 0.602, pumpkin 0.536 in Pb which were dependent on the vegetable species and cereal is showed higher than fruit-vegetables in As. CONCLUSION(S): Soil HCl-extractable concentration of As, Cd, and Pb had the larger effects on thier contents in agricultural products than total soil concentrations. We suggests that TF are served as influential factor on the prediction of uptake. Further study for uptake and accumulation mechanism of toxic metals by agricultural products will be required to assess the human health risk and need TF of more agricultural products.

Geographical Migration of Winter Barley in the Korean Peninsula under the RCP8.5 Projected Climate Condition (신 기후변화시나리오에 따른 한반도 내 겨울보리 재배적지 이동)

  • Kim, Dae-Jun;Kim, Jin-Hee;Roh, Jae-Hwan;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.14 no.4
    • /
    • pp.161-169
    • /
    • 2012
  • The RCP 8.5 scenario based temperature outlook (12.5 km resolution) was combined with high-definition gridded temperature maps (30 m grid spacing) across the Korean Peninsula in order to reclassify the cold hardiness zone for winter barley, a promising grain crop in the future under warmer winter conditions. Reference maps for the January minimum and mean temperature were prepared by applying the watershed-specific geospatial climate prediction schemes to the synoptic observations from 1981 to 2010 across North and South Korea. Decadal changes in the January minimum and mean temperatures projected by a regional version of RCP8.5 climate change scenario were prepared for the 2011-2100 period at 12.5 km grid spacing and were subsequently added to the reference maps, producing the 30 m resolution temperature surfaces for 9 decades from 2011 to 2100. A criterion for threshold temperature to grow winter barley safely in Korea was applied to the future temperature surfaces and the resulting maps were used to predict the production potential of 3 cultivar groups for the 9 future decades under the projected temperature conditions. By 2020s, hulled barley cultivars could be grown safely at the southern part of North Korea as well as the mountainous Gangwon province. Furthermore, most of South Korean rice paddies will be safe for growing naked barley after harvesting rice. Also, dual cropping systems such as 'winter-barley after rice' could be possible at most of the North Korean rice paddies by 2040s. Additional grain production in North Korea could increase up to 4 million tons per year if dual cropping systems can be fully operated, i.e., winter barley after rice at all lowlands and winter barley after maize or potato at all uplands.

The Generation of Westerly Waves by Sobaek Mountains (소백산맥에 의한 서풍 파동 발생)

  • Kim, Jin wook;Youn, Daeok
    • Journal of the Korean earth science society
    • /
    • v.38 no.1
    • /
    • pp.24-34
    • /
    • 2017
  • The westerly waves generation is described in the advanced earth science textbook used at high school as follows: as westerly wind approaches and blows over large mountains, the air flow shows wave motions in downwind side, which can be explained by the conservation of potential vorticity. However, there has been no case study showing the phenomena of the mesoscale westerly waves with observational data in the area of small mountains in Korea. And thus the wind speed and time persistency of westerly winds along with the width and length of mountains have never been studied to explain the generation of the westerly waves. As a first step, we assured the westerly waves generated in the downwind side of Sobaek mountains based on surface station wind data nearby. Furthermore, the critical or minimum wind velocity of the westerly wind over Sobaek mountains to generate the downwind wave were derived and calcuated tobe about $0.6m\;s^{-1}$ for Sobaek mountains, which means that the westerly waves could be generated in most cases of westerly blowing over the mountains. Using surface station data and 4-dimensional assimilation data of RDAPS (Regional Data Assimilation and Prediction System) provided by Korea Meteorological Agency, we also analyzed cases of westerly waves occurrence and life cycle in the downwind side of Sobaek mountains for a year of 2014. The westerly waves occurred in meso-${\beta}$ or -${\gamma}$ scales. The westerly waves generated by the mountains disappeared gradually with wind speed decreasing. The occurrence frequency of the vorticity with meso-${\beta}$ scale got to be higher when the stronger westerly wind blew. When we extended the spatial range of the analysis, phenomena of westerly waves were also observed in the downwind side of Yensan mountains in Northeastern China. Our current work will be a study material to help students understand the atmospheric phenomena perturbed by mountains.

Studies on the ecological variations of rice plant under the different seasonal cultures -II. A study on the year variations and prediction of heading dates of paddy rice under the different seasonal cultures- (재배시기 이동에 의한 수도의 생태변이에 관한 연구 -II. 재배시기 이동에 의한 수도출수기의 년차간변이와 그 조기예측-)

  • Hyun-Ok Choi
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.3
    • /
    • pp.41-48
    • /
    • 1965
  • This study was aimed at knowing the magnitude of year variation in rice heading dates under the different seasonal cultures, and to estimate the heading date in advance. Using six rice varieties such as Kwansan, Suwon#82, Suwon #144, Norin#17, Yukoo#132 and Paltal, the early, ordinary and late seasonal cultures had been carried out at Paddy Crop Division, Crop Experiment Station at Suwon for the six-year period 1959 to 1964. In addition the data of the standard rice cultures at the Provincial Offices of Rural Development for the 12-year period 1953 to 1954, were analyzed for the purpose of clarifying a relationship between variation of rice heading dates and some of meteorological data related to the locations and years. The results of this study are as follows: 1. Year variation of rice heading dates was as high as 14 to 21 days in the early seasonal culture and 7 to 14 days in the ordinary seasonal culture, while as low as one to seven days in the late seasonal culture which was the lowest among three cultures. The magnitude of variation depended greatly on variety, cultural season and location. 2. It was found out that there was a close negative correlation between the accumulated average air temperature for 40 days from 31 days after seeding and number of days to heading in the early seasonal culture. Accordingly, it was considered possible to predict the rice heading date through calculation of the accumulated average air temperature for the above period and then the linear regression(Y=a+bx). On the other hand, an estimation of the heading date in the late seasonal culture requires for the further studies. In the ordinary seasonal culture, no significant correlation between the accumulated average air temperature and number of days to heading was obtained in the six-year experiments conducted at Suwon. There was a varietal difference in relationship between the accumulated average air temperature for 70 days from seeding and number of days to heading in the standard cultures at the provincial offices of rural development. Some of varieties showed a significant correlation between two factors while the others didn't show any significant correlation. However, there was no regional difference in this relationship.

  • PDF

Estimation of freeze damage risk according to developmental stage of fruit flower buds in spring (봄철 과수 꽃눈 발육 수준에 따른 저온해 위험도 산정)

  • Kim, Jin-Hee;Kim, Dae-jun;Kim, Soo-ock;Yun, Eun-jeong;Ju, Okjung;Park, Jong Sun;Shin, Yong Soon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.1
    • /
    • pp.55-64
    • /
    • 2019
  • The flowering seasons can be advanced due to climate change that would cause an abnormally warm winter. Such warm winter would increase the frequency of crop damages resulted from sudden occurrences of low temperature before and after the vegetative growth stages, e.g., the period from germination to flowering. The degree and pattern of freezing damage would differ by the development stage of each individual fruit tree even in an orchard. A critical temperature, e.g., killing temperature, has been used to predict freeze damage by low-temperature conditions under the assumption that such damage would be associated with the development stage of a fruit flower bud. However, it would be challenging to apply the critical temperature to a region where spatial variation in temperature would be considerably high. In the present study, a phenological model was used to estimate major bud development stages, which would be useful for prediction of regional risks for the freeze damages. We also derived a linear function to calculate a probabilistic freeze risk in spring, which can quantitatively evaluate the risk level based solely on forecasted weather data. We calculated the dates of freeze damage occurrences and spatial risk distribution according to main production areas by applying the spring freeze risk function to apple, peach, and pear crops in 2018. It was predicted that the most extensive low-temperature associated freeze damage could have occurred on April 8. It was also found that the risk function was useful to identify the main production areas where the greatest damage to a given crop could occur. These results suggest that the freezing damage associated with the occurrence of low-temperature events could decrease providing early warning for growers to respond abnormal weather conditions for their farm.

Smart farm development strategy suitable for domestic situation -Focusing on ICT technical characteristics for the development of the industry6.0- (국내 실정에 적합한 스마트팜 개발 전략 -6차산업의 발전을 위한 ICT 기술적 특성을 중심으로-)

  • Han, Sang-Ho;Joo, Hyung-Kun
    • Journal of Digital Convergence
    • /
    • v.20 no.4
    • /
    • pp.147-157
    • /
    • 2022
  • This study tried to propose a smart farm technology strategy suitable for the domestic situation, focusing on the differentiation suitable for the domestic situation of ICT technology. In the case of advanced countries in the overseas agricultural industry, it was confirmed that they focused on the development of a specific stage that reflected the geographical characteristics of each country, the characteristics of the agricultural industry, and the characteristics of the people's demand. Confirmed that no enemy development is being performed. Therefore, in response to problems such as a rapid decrease in the domestic rural population, aging population, loss of agricultural price competitiveness, increase in fallow land, and decrease in use rate of arable land, this study aims to develop smart farm ICT technology in the future to create quality agricultural products and have price competitiveness. It was suggested that the smart farm should be promoted by paying attention to the excellent performance, ease of use due to the aging of the labor force, and economic feasibility suitable for a small business scale. First, in terms of economic feasibility, the ICT technology is configured by selecting only the functions necessary for the small farm household (primary) business environment, and the smooth communication system with these is applied to the ICT technology to gradually update the functions required by the actual farmhouse. suggested that it may contribute to the reduction. Second, in terms of performance, it is suggested that the operation accuracy can be increased if attention is paid to improving the communication function of ICT, such as adjusting the difficulty of big data suitable for the aging population in Korea, using a language suitable for them, and setting an algorithm that reflects their prediction tendencies. Third, the level of ease of use. Smart farms based on ICT technology for the development of the Industry6.0 (1.0(Agriculture, Forestry) + 2.0(Agricultural and Water & Water Processing) + 3.0 (Service, Rural Experience, SCM)) perform operations according to specific commands, finally suggested that ease of use can be promoted by presetting and standardizing devices based on big data configuration customized for each regional environment.

Evaluating the Predictability of Heat and Cold Damages of Soybean in South Korea using PNU CGCM -WRF Chain (PNU CGCM-WRF Chain을 이용한 우리나라 콩의 고온해 및 저온해에 대한 예측성 검증)

  • Myeong-Ju, Choi;Joong-Bae, Ahn;Young-Hyun, Kim;Min-Kyung, Jung;Kyo-Moon, Shim;Jina, Hur;Sera, Jo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.4
    • /
    • pp.218-233
    • /
    • 2022
  • The long-term (1986~2020) predictability of the number of days of heat and cold damages for each growth stage of soybean is evaluated using the daily maximum and minimum temperature (Tmax and Tmin) data produced by Pusan National University Coupled General Circulation Model (PNU CGCM)-Weather Research and Forecasting (WRF). The Predictability evaluation methods for the number of days of damages are Normalized Standard Deviations (NSD), Root Mean Square Error (RMSE), Hit Rate (HR), and Heidke Skill Score (HSS). First, we verified the simulation performance of the Tmax and Tmin, which are the variables that define the heat and cold damages of soybean. As a result, although there are some differences depending on the month starting with initial conditions from January (01RUN) to May (05RUN), the result after a systematic bias correction by the Variance Scaling method is similar to the observation compared to the bias-uncorrected one. The simulation performance for correction Tmax and Tmin from March to October is overall high in the results (ENS) averaged by applying the Simple Composite Method (SCM) from 01RUN to 05RUN. In addition, the model well simulates the regional patterns and characteristics of the number of days of heat and cold damages by according to the growth stages of soybean, compared with observations. In ENS, HR and HSS for heat damage (cold damage) of soybean have ranged from 0.45~0.75, 0.02~0.10 (0.49~0.76, -0.04~0.11) during each growth stage. In conclusion, 01RUN~05RUN and ENS of PNU CGCM-WRF Chain have the reasonable performance to predict heat and cold damages for each growth stage of soybean in South Korea.