Journal of the Korean Society of Marine Environment & Safety
/
v.25
no.3
/
pp.334-343
/
2019
The Al-Zour coastal area, located in southern Kuwait, is a region of concentrated industrial water use, seawater intake, and the outfall of existing power plants. The Al-Zour LNG import facility project is ongoing and there are two issues regarding the seawater temperature in this area that must be considered: variations in water temperature under local meteorology and an increase in water temperature due to the expansion of the thermal discharge of expanded power plant. MIKE 3 model was applied to simulate the water temperature from June to July, based on re-analysis data from the European Centre for Medium-Range Weather Forecasts (ECMWF) and the thermal discharge input from adjacent power plants. The annual water temperatures of two candidate locations of the seawater intake for the Al-Zour LNG re-gasification facility were measured in 2017 and compared to the numerical results. It was determined that the daily seawater temperature is mainly affected by thermal plume dispersion oscillating with the phase of the tidal currents. The regional meteorological conditions such as air temperature and tidal currents, also contributed a great deal to the prediction of seawater temperature.
In 2013, the Ministry of Environment in South Korea promulgated a new regulatory bulletin that contained revised enforcement ordinance on soil management protocols. The bulletin recommends the use of Universal Soil Loss Equation (USLE) for the soil erosion estimation, but USLE has limited applicability in prediction of soil erosion because it does not allow direct estimation of actual mass of soil erosion. Therefore, there is a great need of revising the protocol to allow direct comparison between the measured and estimated values of soil erosion. The Korean Soil Loss Equation (KORSLE) was developed recently and used to estimate soil loss in two fields as an alternative to existing USLE model. KORSLE was applied to estimate monthly rainfall erosivity indices as well as temporal variation in potential soil loss. The estimated potential soil loss by KORSLE was adjusted with correction factor for direct comparison with measured soil erosion. The result was reasonable since Nash-Stucliff efficiency were 0.8020 in calibration and 0.5089 in validation. The results suggest that KORSLE is an appropriate model as an alternative to USLE to predict soil erosion at field scale.
International journal of advanced smart convergence
/
v.10
no.2
/
pp.37-44
/
2021
At the time of entering the super-aged society, the health problem of the elderly is becoming more prominent due to the rapid digital era caused by COVID-19, but the gap between welfare budgets and welfare benefits according to regional characteristics is still not narrowed and there is a significant difference in emergency medical access. In response, this study proposes an ICT-based New Normal Smart Care System (NNSCS) to bridge the gap I n health and medical problems. This is an integrated system model that links the elderly themselves to health care, self-diagnosis, disease prediction and prevention, and emergency medical services. The purpose is to apply location-based technology and motion recognition technology under smartphones and smartwatches (wearable) environments to detect health care and risks, predict and diagnose diseases using health and medical big data, and minimize treatment latency. Through the New Normal Smart Care System (NNSCS), which links health care, prevention, and rapid emergency treatment with easy and simple access to health care for the elderly, it aims to minimize health gaps and solve health problems for the elderly.
Recently, technologies for efficient power grid operation have become important due to climate change. For this reason, predicting power demand using deep learning is being considered, and it is necessary to understand the influence of characteristics of each region, industrial structure, and climate. This study analyzed the power demand of New Jersey in US, with a high urbanization rate and a large service industry, and West Virginia in US, a low urbanization rate and a large coal, energy, and chemical industries. Using recurrent neural network algorithm, the power demand from January 2020 to August 2022 was learned, and the daily and weekly power demand was predicted. In addition, the power grid operation based on the power demand forecast was discussed. Unlike previous studies that have focused on the deep learning algorithm itself, this study analyzes the regional power demand characteristics and deep learning algorithm application, and power grid operation strategy.
KwangRim, Ha;YongCheol, Jung;JinYoung, Yoo;JunHee, Lee
Journal of Korea Society of Industrial Information Systems
/
v.27
no.6
/
pp.77-93
/
2022
In this study, we present an algorithm that analyzes the risk by reflecting regional characteristics for factors affected by direct and indirect damage from heavy-snow. Factors affected by heavy-snow damage by 29 regions are selected as influencing variables, and the concept of sensitivity is derived through the relationship with the amount of damage. A snow damage risk prediction model was developed using a machine learning (XGBoost) algorithm by setting weather conditions (snow cover, humidity, temperature) and sensitivity as independent variables, and setting the risk derived according to changes in the independent variables as dependent variables.
Chronic postsurgical pain (CPSP) is a multifactorial condition that affects a significant proportion of patients undergoing surgery. The prevention and management of CPSP require the identification of preoperative risk factors to screen high-risk patients and establish appropriate perioperative pain management plans to prevent its development. Active postoperative pain management should be provided to prevent CPSP in patients with severe pain following surgery. These tasks have become important for perioperative team members in the management of CPSP. This review article provides a comprehensive overview of the latest research on the role of perioperative team members in preventing and managing CPSP. Additionally, it highlights practical strategies that can be employed in clinical practice, covering the definition and risk factors for CPSP, including preoperative, intraoperative, and postoperative factors, as well as a risk prediction model. The article also explores various treatments for CPSP, as well as preventive measures, including preemptive analgesia, regional anesthesia, pharmacological interventions, psychoeducational support, and surgical technique modification. This article emphasizes the importance of a comprehensive perioperative pain management plan that includes multidisciplinary interventions, using the transitional pain service as an example. By adopting a multidisciplinary and collaborative approach, perioperative team members can improve patient outcomes, enhance patient satisfaction, and reduce healthcare costs. However, further research is necessary to establish targeted interventions to effectively prevent and manage CPSP.
Proceedings of the Korea Water Resources Association Conference
/
2020.06a
/
pp.132-132
/
2020
유황곡선은 하천유량의 변동성을 함축적으로 나타내고 연간유량 분석방법(calendar-year method)과 전 자료기간유량분석방법(total-period method)을 이용하여 작성하고 분석할 수 있다. 본 연구는 유황곡선 상에서 유역특성인자들을 포함시켜 작성하는 방법을 제시하였고 지형 및 기상학적 인자를 통해 지역화 시킨 유황곡선을 통해 미계측 유역의 유황곡선을 추정할 수 있는 곡선을 개발하고자 한다. 이를 위해 유역의 특성인자자료를 수집하여 독립변수로 설정하였고 다중회귀분석을 실시하여 변수들을 지역화 시켰다. 지역화 시킨 변수들을 유황곡선에 반영하여 대상지역에서 하나의 유황곡선으로 나타내었다. 도출한 유황곡선을 자료가 있는 지역을 미계측유역이라 가정하고 검증하였다. 검증결과 실제자료와 유사하게 나타나는 것을 확인할 수 있었고 이를 통해 미계측 유역의 유출량 자료가 부족한 유역에 대한 예측과 과거 많은 부분이 결측된 유역에 대한 유출량 예측도 가능할 것이라 판단된다. 또한 강우시나리오를 통해 지형인자가 고려된 유황곡선을 이용한 다양한 자료분석을 실시할 수 있을 것이라 판단된다.
Proceedings of the Korean Society of Crop Science Conference
/
2022.10a
/
pp.14-14
/
2022
Greenhouse gas emissions are one of the critical factors that drive change in rice cropping systems. Within this changing system, less water irrigation and chemical fertilizer are seriously considered, as well combining precision farming technologies with irrigation control. Water and phosphorus (P) fertilizer are two of the most critical inputs in rice cultivation. Due to the lack of water availability in the system, P fertilizer is not available, especially in acidic soil conditions. Moreover, the various types of abiotic stresses, such as drought, high temperature, salinity, submergence, and limited fertilizer result in significant yield loss in the system. Even in the late stage of growth, the waves caused by diseases and insects make the field more unfruitful. Therefore, agronomists and breeders need to identify the secondary phenotypes to estimate the yield loss of when stress appears. The prediction will be clearer if we have a set of markers tagging the causal variation and the associated precise phenotype indices. Although there have been various studies for abiotic stress tolerance, we still lack functional molecular markers and phenotype indices. This is due to the underlying challenges caused by environmental factors in highly unpredictable regional and yearly environmental conditions in the field system. Pupl (phosphorus uptake 1) is still known as the first QTL associated with phosphorus uptake and have been validated in different field crops. Interestingly, some pyramiding lines of Pupl and other QTLs for other stress tolerances showed preferable phenotypes in the yield. Precise physiological studies with the help of genomics are on-going and some results will be discussed.
This paper aims to predict Busan's regional product and employment using the logistic regression models and machine learning models. The following are the main findings of the empirical analysis. First, the OLS regression model shows that the main industries such as electricity and electronics, machine and transport, and finance and insurance affect the Busan's income positively. Second, the binomial logistic regression models show that the Busan's strategic industries such as the future transport machinery, life-care, and smart marine industries contribute on the Busan's income in large order. Third, the multinomial logistic regression models show that the Korea's main industries such as the precise machinery, transport equipment, and machinery influence the Busan's economy positively. And Korea's exports and the depreciation can affect Busan's economy more positively at the higher employment level. Fourth, the voting ensemble model show the higher predictive power than artificial neural network model and support vector machine models. Furthermore, the gradient boosting model and the random forest show the higher predictive power than the voting model in large order.
The prediction of seismic behavior of the existing building stock is one of the most impactful and complex problems faced by countries with frequent and intense seismic activities. Human lives can be threatened or lost, the economic life is disrupted and large amounts of monetary reparations can be potentially required. However, authorities at a regional or national level have limited resources at their disposal in order to allocate to preventative measures. Thus, in order to do so, it is essential for them to be able to rank a given population of structures according to their expected degree of damage in an earthquake. In this paper, the authors present a ranking approach, based on Machine Learning (ML) algorithms for pairwise comparisons, coupled with ad hoc ranking rules. The case study employed data from 404 reinforced concrete structures with various degrees of damage from the Athens 1999 earthquake. The two main components of our experiments pertain to the performance of the ML models and the success of the overall ranking process. The former was evaluated using the well-known respective metrics of Precision, Recall, F1-score, Accuracy and Area Under Curve (AUC). The performance of the overall ranking was evaluated using Kendall's tau distance and by viewing the problem as a classification into bins. The obtained results were promising, and were shown to outperform currently employed engineering practices. This demonstrated the capabilities and potential of these models in identifying the most vulnerable structures and, thus, mitigating the effects of earthquakes on society.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.