• Title/Summary/Keyword: Regional prediction

Search Result 520, Processing Time 0.029 seconds

Predicting the Changes in Cultivation Areas of Walnut Trees (Juglans sinensis) in Korea Due to Climate Change Impacts (기후변화 영향에 따른 호두나무 재배지역 변화 예측)

  • Lee, Sang-Hyuk;Lee, Peter Sang-Hoon;Lee, Sol Ae;Ji, Seung-Yong;Choi, Jaeyong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.4
    • /
    • pp.399-410
    • /
    • 2015
  • The objective of our study was to predict future cultivation areas for walnut trees (Juglans sinensis), using the cultivation suitability map provided from Korea Forest Service and MaxEnt modelling under future climate conditions. The climate conditions in 2050s and 2070s were computed using the Regional Climate Prediction (RCP) 4.5 and 8.5 scenarios with the HadGEM2-AO model. As a result, compared to the present area, the cultivation area of the western Korea including Chungcheongnamdo, Jeollabuk-do, Jeollanam-do decreased on a national scale under RCP 4.5, and those of Gyeongsangbukdo and part of Gyeongsangnam-do decreased under RCP 8.5. However, Gangwon-do which is located in higher altitude over 600 meters than other regions showed increases in cultivation areas of 18.3% under RCP 4.5 and of 56.6% under RCP 8.5 by 2070s. The predicted map showed large regional variations in the cultivation areas with climate change. From the analysis of current top ranking areas, the cultivation areas in Gimcheon-si and Yeongdong-gun dramatically decreased by 2070s under RCP 4.5 and 8.5; that of Gongju-si decreased more under RCP 4.5; and those of Muju-gun and Cheonan-si sustained the areas by 2070s under both scenarios. The results from this study can be helpful for providing a guide for minimizing the loss of walnut production and proactively improving productivity and quality of walnuts with regard to unavoidable climate change in South Korea.

Interactions between Soil Moisture and Weather Prediction in Rainfall-Runoff Application : Korea Land Data Assimilation System(KLDAS) (수리 모형을 이용한 Korea Land Data Assimilation System (KLDAS) 자료의 수문자료에 대한 영향력 분석)

  • Jung, Yong;Choi, Minha
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.172-172
    • /
    • 2011
  • The interaction between land surface and atmosphere is essentially affected by hydrometeorological variables including soil moisture. Accurate estimation of soil moisture at spatial and temporal scales is crucial to better understand its roles to the weather systems. The KLDAS(Korea Land Data Assimilation System) is a regional, specifically Korea peninsula land surface information systems. As other prior land data assimilation systems, this can provide initial soil field information which can be used in atmospheric simulations. For this study, as an enabling high-resolution tool, weather research and forecasting(WRF-ARW) model is applied to produce precipitation data using GFS(Global Forecast System) with GFS embedded and KLDAS soil moisture information as initialization data. WRF-ARW generates precipitation data for a specific region using different parameters in physics options. The produced precipitation data will be employed for simulations of Hydrological Models such as HEC(Hydrologic Engineering Center) - HMS(Hydrologic Modeling System) as predefined input data for selected regional water responses. The purpose of this study is to show the impact of a hydrometeorological variable such as soil moisture in KLDAS on hydrological consequences in Korea peninsula. The study region, Chongmi River Basin, is located in the center of Korea Peninsular. This has 60.8Km river length and 17.01% slope. This region mostly consists of farming field however the chosen study area placed in mountainous area. The length of river basin perimeter is 185Km and the average width of river is 9.53 meter with 676 meter highest elevation in this region. We have four different observation locations : Sulsung, Taepyung, Samjook, and Sangkeug observatoriesn, This watershed is selected as a tentative research location and continuously studied for getting hydrological effects from land surface information. Simulations for a real regional storm case(June 17~ June 25, 2006) are executed. WRF-ARW for this case study used WSM6 as a micro physics, Kain-Fritcsch Scheme for cumulus scheme, and YSU scheme for planetary boundary layer. The results of WRF simulations generate excellent precipitation data in terms of peak precipitation and date, and the pattern of daily precipitation for four locations. For Sankeug observatory, WRF overestimated precipitation approximately 100 mm/day on July 17, 2006. Taepyung and Samjook display that WRF produced either with KLDAS or with GFS embedded initial soil moisture data higher precipitation amounts compared to observation. Results and discussions in detail on accuracy of prediction using formerly mentioned manners are going to be presented in 2011 Annual Conference of the Korean Society of Hazard Mitigation.

  • PDF

Developing a regional fog prediction model using tree-based machine-learning techniques and automated visibility observations (시정계 자료와 기계학습 기법을 이용한 지역 안개예측 모형 개발)

  • Kim, Daeha
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.12
    • /
    • pp.1255-1263
    • /
    • 2021
  • While it could become an alternative water resource, fog could undermine traffic safety and operational performance of infrastructures. To reduce such adverse impacts, it is necessary to have spatially continuous fog risk information. In this work, tree-based machine-learning models were developed in order to quantify fog risks with routine meteorological observations alone. The Extreme Gradient Boosting (XGB), Light Gradient Boosting (LGB), and Random Forests (RF) were chosen for the regional fog models using operational weather and visibility observations within the Jeollabuk-do province. Results showed that RF seemed to show the most robust performance to categorize between fog and non-fog situations during the training and evaluation period of 2017-2019. While the LGB performed better than in predicting fog occurrences than the others, its false alarm ratio was the highest (0.695) among the three models. The predictability of the three models considerably declined when applying them for an independent period of 2020, potentially due to the distinctively enhanced air quality in the year under the global lockdown. Nonetheless, even in 2020, the three models were all able to produce fog risk information consistent with the spatial variation of observed fog occurrences. This work suggests that the tree-based machine learning models could be used as tools to find locations with relatively high fog risks.

Seismic Zonation on Site Responses in Daejeon by Building Geotechnical Information System Based on Spatial GIS Framework (공간 GIS 기반의 지반 정보 시스템 구축을 통한 대전 지역의 부지 응답에 따른 지진재해 구역화)

  • Sun, Chang-Guk
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.1
    • /
    • pp.5-19
    • /
    • 2009
  • Most of earthquake-induced geotechnical hazards have been caused by the site effects relating to the amplification of ground motion, which is strongly influenced by the local geologic conditions such as soil thickness or bedrock depth and soil stiffness. In this study, an integrated GIS-based information system for geotechnical data, called geotechnical information system (GTIS), was constructed to establish a regional counterplan against earthquake-induced hazards at an urban area of Daejeon, which is represented as a hub of research and development in Korea. To build the GTIS for the area concerned, pre-existing geotechnical data collections were performed across the extended area including the study area and site visits were additionally carried out to acquire surface geo-knowledge data. For practical application of the GTIS used to estimate the site effects at the area concerned, seismic zoning map of the site period was created and presented as regional synthetic strategy for earthquake-induced hazards prediction. In addition, seismic zonation for site classification according to the spatial distribution of the site period was also performed to determine the site amplification coefficients for seismic design and seismic performance evaluation at any site in the study area. Based on this case study on seismic zonations in Daejeon, it was verified that the GIS-based GTIS was very useful for the regional prediction of seismic hazards and also the decision support for seismic hazard mitigation.

A Study on the Application of GFRP Rock Bolt Sensor through Field Experiment and Numerical Analysis (현장실험과 수치해석을 통한 GFRP 록볼트 센서의 적용성 연구)

  • Lee, Seungjoo;Chang, Suk-Hyun;Lee, Kang-Il;Kim, Bumjoo;Heo, Joon;Kim, Yong-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.129-138
    • /
    • 2019
  • In this study, the rebar rock bolt sensor and GFRP rock bolt sensor, which can be monitored, were embedded in a large model slope, and the behavior of slopes occurred in the early stage of slope collapse was analyzed after performing the field failure test, numerical analysis of the individual element method and finite element method. By comparing and analyzing the field test and numerical analysis results, field applicability of rock slope collapse monitoring on the rebar rock bolt sensor and GFRP rock bolt sensor was investigated. Through this study, smart slope collapse prediction and warning system was developed, which can be used to induce effective evacuation of residents living in the collapsible area by detecting landslide and ground decay precursor information in advance.

A Long Term Effect Prediction of Radioactive Waste Repository Facility in Gyeongju (경주시에 대한 중저준위 방사성폐기물처분장 건설 프로그램의 장기적 효과)

  • Oh, Young-Min;Jung, Chang-Hoon
    • Korean System Dynamics Review
    • /
    • v.9 no.2
    • /
    • pp.105-128
    • /
    • 2008
  • City of Gyeongju's referendum finally offered the long-waited low-level radioactive waste disposal site in November 2005. Gyeongju's positive decision was due to the various economic rewards and incentives the national government promised to the city. 300 billion won for an accepting bonus, the location of the headquarter building of the Korean Hydro and Nuclear Power Co., and the accelerator research center and 3.25 trillion won for supporting regional development program implementation. All of the above will affect the city's infrastructure and the citizens' economic and social lives. Population, land use, economic structure, SOC and quality of life will be affected. Some will be very positive, and some will be negative. This research project will see the future of the city and forecast the demographic, economic, physical and environmental changes of the city via computer simulation's system dynamics technique. This kind of simulation will help City of Gyeongju's what to prepare for the future. The population forecasting of the year 2046 will be 662,424 with the waste disposal site, and 327,274 without the waste disposal site in Gyeongju. The waste disposal site and regional supporting program will increase 184,246 Jobs more with 1,605 agriculture and fishery, 5,369 manufacturing shops and 27,577 shops. The population increase will bring 96,726 more houses constructed in the city. Land use will also be affected. More land will be developed. And road, water plant and waste water plant will be expanded as much. The city's financial structure will be expanded, due to the increased revenues from the waste disposal site, and property tax revenues from the middle-class employees of the company, and the high-powered scientists and technologists from the accelerator research center. All in all, the future of the city will be brighter after operating the nuclear waste disposal site inside the city.

  • PDF

CLIMATE CHANGE IMPACT OVER INDIAN AGRICULTURE - A SPATIAL MODELING APPROACH

  • Priya, Satya;Shibasaki, Ryosuke
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.107-114
    • /
    • 1999
  • The large-scale distribution of crops Is usually determined by climate. We present the results of a climate-crop prediction based on spatial bio-physical process model approach, implemented in a GIS (Geographic Information System) environment using several regional and global agriculture-environmental databases. The model utilizes daily climate data like temperature, rainfall, solar radiation being generated stocastically by in-built model weather generator to determine the daily biomass and finally the crop yield. Crops are characterized by their specific growing period requirements, photosynthesis, respiration properties and harvesting index properties. Temperature and radiation during the growing period controls the development of each crop. The model simulates geographic/spatial distribution of climate by which a crop-growing belt can also be determined. The model takes both irrigated and non-irrigated area crop productivity into account and the potential increase in productivity by the technical means like mechanization is not considered. All the management input given at the base year 1995 was kept same for the next twenty-year changes until 2015. The simulated distributions of crops under current climatic conditions coincide largely with the current agricultural or specific crop growing regions. Simulation with assumed weather generated derived climate change scenario illustrate changes in the agricultural potential. There are large regional differences in the response across the country. The north-south and east-west regions responded differently with projected climate changes with increased and decreased productivity depending upon the crops and scenarios separately. When water was limiting or facilitating as non-irrigated and irrigated area crop-production effects of temperature rise and higher $CO_2$ levels were different depending on the crops and accordingly their production. Rise in temperature led to yield reduction in case of maize and rice whereas a gain was observed for wheat crop, doubled $CO_2$ concentration enhanced yield for all crops and their several combinations behaved differently with increase or decrease in yields. Finally, with this spatial modeling approach we succeeded in quantifying the crop productivity which may bring regional disparities under the different climatic scenarios where one region may become better off and the other may go worse off.

  • PDF

Application of Urban Stream Discharge Simulation Using Short-term Rainfall Forecast (단기 강우예측 정보를 이용한 도시하천 유출모의 적용)

  • Yhang, Yoo Bin;Lim, Chang Mook;Yoon, Sun Kwon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.2
    • /
    • pp.69-79
    • /
    • 2017
  • In this study, we developed real-time urban stream discharge forecasting model using short-term rainfall forecasts data simulated by a regional climate model (RCM). The National Centers for Environmental Prediction (NCEP) Climate Forecasting System (CFS) data was used as a boundary condition for the RCM, namely the Global/Regional Integrated Model System(GRIMs)-Regional Model Program (RMP). In addition, we make ensemble (ESB) forecast with different lead time from 1-day to 3-day and its accuracy was validated through temporal correlation coefficient (TCC). The simulated rainfall is compared to observed data, which are automatic weather stations (AWS) data and Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA 3B43; 3 hourly rainfall with $0.25^{\circ}{\times}0.25^{\circ}$ resolution) data over midland of Korea in July 26-29, 2011. Moreover, we evaluated urban rainfall-runoff relationship using Storm Water Management Model (SWMM). Several statistical measures (e.g., percent error of peak, precent error of volume, and time of peak) are used to validate the rainfall-runoff model's performance. The correlation coefficient (CC) and the Nash-Sutcliffe efficiency (NSE) are evaluated. The result shows that the high correlation was lead time (LT) 33-hour, LT 27-hour, and ESB forecasts, and the NSE shows positive values in LT 33-hour, and ESB forecasts. Through this study, it can be expected to utilizing the real-time urban flood alert using short-term weather forecast.

Evaluation of Temperature and Precipitation on Integrated Climate and Air Quality Modeling System (ICAMS) for Air Quality Prediction (대기질 예측을 위한 기후·대기환경 통합모델링시스템 (ICAMS)의 기온 및 강수량 예측 능력 평가)

  • Choi, Jin-Young;Kim, Seung-Yeon;Hong, Sung-Chul;Lee, Jae-Bum;Song, Chang-Keun;Lee, Hyun-Ju;Lee, Suk-Jo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.6
    • /
    • pp.615-631
    • /
    • 2012
  • This study provides an evaluation for capability of Integrated Climate and Air quality Modeling System (ICAMS) on future regional scale climate projection. Temperature and precipitation are compared between ground-level observation data and results of regional models (MM5) for the past 30 years over the Korean peninsula. The ICAMS successfully simulates the local-scale spatial/seasonal variation of the temperature and precipitation. The probability distribution of simulated daily mean and minimum temperature agree well with the observed patterns and trends, although mean temperature shows a little cold bias about $1^{\circ}C$ compared to observations. It seems that a systematic cold bias is mostly due to an underestimation of maximum temperature. In the case of precipitation, the rainfall in winter and light rainfall are remarkably simulated well, but summer precipitation is underestimated in the heavy rainfall phenomena of exceeding 20 mm/day. The ICAMS shows a tendency to overestimate the number of washout days about 7%. Those results of this study indicate that the performance of ICAMS is reasonable regarding to air quality predication over the Korean peninsula.

Annual energy yield prediction of building added PV system depending on the installation angle and the location in Korea (건물적용 태양광발전시스템의 국내 지역에 따른 설치각도별 연간 전력생산량 예측에 관한 연구)

  • Kim, Dong Su;Shin, U Cheol;Yoon, Jong Ho
    • KIEAE Journal
    • /
    • v.14 no.1
    • /
    • pp.67-74
    • /
    • 2014
  • There have distinctly been no the installation criteria and maintenance management of BIPV systems, although the BIPV market is consistently going on increasing. In addition, consideration of the BIPV generation quantity which has been installed at several diverse places is currently almost behind within region in Korea. Therefore, the main aim of this study is to evaluate the BIPV generation and to be base data of reducing rate depending on regional installation angles using PVpro which was verified by measured data. Various conditions were an angle of inclination and azimuth under six major cities: Seoul, Daejeon, Daegu, Busan, Gwangju, Jeju-si for the BIPV system generation analysis. As the results, Seoul showed the lowest BIPV generation: 1,054kWh/kWp.year, and Jeju-si have 5percent more generation: 1,108.0kWh/kWp.year than Seoul on horizontal plane. Gwangju and Daejeon turned out to have similar generation of result, and Busan showed the highest generation: 1,193.5kWh/kWp.year, which was increased by over 13percent from Seoul on horizontal plane. Another result, decreasing rate of BIPV generation depending on regional included angle indicate that the best position was located on azimuth: $0^{\circ}$(The south side) following the horizontal position(an angle of inclination: $30^{\circ}$). And the direction on a south vertical position(azimuth: $0^{\circ}$, an angle of inclination: $90^{\circ}$) then turned out reducing rate about 40percent compared with the best one. Therefore, these results would be used to identify the installation angle of the BIPV module as an appropriate position.