• Title/Summary/Keyword: Regional optimization

Search Result 154, Processing Time 0.018 seconds

The Change of Tourism Industry Efficiency in Heilongjiang Province under the Background of Northeast Revitalization Strategy (동북진흥전략 배경하에서 흑룡강성 관광산업의 효율성 변화)

  • Lei Wang;Gi young Chung
    • Industry Promotion Research
    • /
    • v.9 no.3
    • /
    • pp.295-309
    • /
    • 2024
  • With the implementation of the Northeast Revitalization Strategy, the tourism industry in Heilongjiang Province had an increasingly greater impact on regional economic development. Based on the tourism panel data of Heilongjiang Province from 2005 to 2021, this paper used DEA-BCC and Malmquist Index to analyze the static and dynamic changes of the tourism industry.The results of the study were as follows: (1) Static: The OE value reached strong DEA effectiveness in 2010, 2013, and 2019, indicated that tourism resources had been fully utilized. The SE value changed dramatically between 0.354 and 1, and the PTE value approached 1. OE was mainly affected by SE changes. (2) Dynamic: The total factor productivity (TFP) was overall greater than 1 and grew at an average annual rate of 13.8%. The variation in TFP was primarily influenced by the index of technological progress, indicated that the tourism industry in Heilongjiang Province made full use of technology for resource development, with a relatively high level of development efficiency. Therefore, the future focus of Heilongjiang Province's tourism industry will be on adjustments in industrial scale, technological innovation, and policy optimization.

Performance Optimization of Numerical Ocean Modeling on Cloud Systems (클라우드 시스템에서 해양수치모델 성능 최적화)

  • JUNG, KWANGWOOG;CHO, YANG-KI;TAK, YONG-JIN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.27 no.3
    • /
    • pp.127-143
    • /
    • 2022
  • Recently, many attempts to run numerical ocean models in cloud computing environments have been tried actively. A cloud computing environment can be an effective means to implement numerical ocean models requiring a large-scale resource or quickly preparing modeling environment for global or large-scale grids. Many commercial and private cloud computing systems provide technologies such as virtualization, high-performance CPUs and instances, ether-net based high-performance-networking, and remote direct memory access for High Performance Computing (HPC). These new features facilitate ocean modeling experimentation on commercial cloud computing systems. Many scientists and engineers expect cloud computing to become mainstream in the near future. Analysis of the performance and features of commercial cloud services for numerical modeling is essential in order to select appropriate systems as this can help to minimize execution time and the amount of resources utilized. The effect of cache memory is large in the processing structure of the ocean numerical model, which processes input/output of data in a multidimensional array structure, and the speed of the network is important due to the communication characteristics through which a large amount of data moves. In this study, the performance of the Regional Ocean Modeling System (ROMS), the High Performance Linpack (HPL) benchmarking software package, and STREAM, the memory benchmark were evaluated and compared on commercial cloud systems to provide information for the transition of other ocean models into cloud computing. Through analysis of actual performance data and configuration settings obtained from virtualization-based commercial clouds, we evaluated the efficiency of the computer resources for the various model grid sizes in the virtualization-based cloud systems. We found that cache hierarchy and capacity are crucial in the performance of ROMS using huge memory. The memory latency time is also important in the performance. Increasing the number of cores to reduce the running time for numerical modeling is more effective with large grid sizes than with small grid sizes. Our analysis results will be helpful as a reference for constructing the best computing system in the cloud to minimize time and cost for numerical ocean modeling.

Optimization of Correction Factor for Linearization with Tc-99m HM PAO and Tc-99m ECD Brain SPECT (Tc-99m HMPAO와 Tc-99m ECD 뇌SPECT의 뇌혈류량 정량화에 사용되는 Linearization Algorithm의 Correction Factor 조사)

  • Cho, Ihn-Ho;Hayashida, Kohei;Won, Kyu-Chang;Lee, Hyoung-Woo;Watabe, Hiroshi;Kume, Norihiko;Uyama, Chikao
    • Journal of Yeungnam Medical Science
    • /
    • v.16 no.2
    • /
    • pp.237-243
    • /
    • 1999
  • We conducted this study to find the optimal correction factor(${\alpha}$) of Lassen's linearization algorithm which has been applied for correction of flow-limited uptake at a high flow range in $^{99m}Tc$ d,l-hexamethylpropy leneamine oxime(HMPAO) and $^{99m}Tc$ ethyl cysteinate dimer(ECD). Ten patients with chronic cerebral infarction were involved in this study. We obtained the corrected $^{99m}Tc$ HMPAO and $^{99m}Tc$-ECD brain SPECT(single photon emission computed tomography) using the algorithm with ${\alpha}$ values that varied from 0.1 to 10 and compared the results with regional cerebral blood flow determined by positron emission tomography (PET-rCBF). The multi-modal volume registration by maximization of mutual information was used for matching between PET-rCBF and SPECT images. The highest correlation coefficient between $^{99m}Tc$-HMPAO and $^{99m}Tc$-ECD brain uptake and PET-rCBF was revealed at ${\alpha}$ 1.4 and 2.1, respectively. We concluded that the ${\alpha}$ values of Lassen's linearization algorithm for $^{99m}Tc$-HMPAO and $^{99m}Tc$-ECD brain SPECT images were 1.4 and 2.1, respectively to indicate cerebral blood flow with comparison of PET-rCBF.

  • PDF

Optimization Process Models of Gas Combined Cycle CHP Using Renewable Energy Hybrid System in Industrial Complex (산업단지 내 CHP Hybrid System 최적화 모델에 관한 연구)

  • Oh, Kwang Min;Kim, Lae Hyun
    • Journal of Energy Engineering
    • /
    • v.28 no.3
    • /
    • pp.65-79
    • /
    • 2019
  • The study attempted to estimate the optimal facility capacity by combining renewable energy sources that can be connected with gas CHP in industrial complexes. In particular, we reviewed industrial complexes subject to energy use plan from 2013 to 2016. Although the regional designation was excluded, Sejong industrial complex, which has a fuel usage of 38 thousand TOE annually and a high heat density of $92.6Gcal/km^2{\cdot}h$, was selected for research. And we analyzed the optimal operation model of CHP Hybrid System linking fuel cell and photovoltaic power generation using HOMER Pro, a renewable energy hybrid system economic analysis program. In addition, in order to improve the reliability of the research by analyzing not only the heat demand but also the heat demand patterns for the dominant sectors in the thermal energy, the main supply energy source of CHP, the economic benefits were added to compare the relative benefits. As a result, the total indirect heat demand of Sejong industrial complex under construction was 378,282 Gcal per year, of which paper industry accounted for 77.7%, which is 293,754 Gcal per year. For the entire industrial complex indirect heat demand, a single CHP has an optimal capacity of 30,000 kW. In this case, CHP shares 275,707 Gcal and 72.8% of heat production, while peak load boiler PLB shares 103,240 Gcal and 27.2%. In the CHP, fuel cell, and photovoltaic combinations, the optimum capacity is 30,000 kW, 5,000 kW, and 1,980 kW, respectively. At this time, CHP shared 275,940 Gcal, 72.8%, fuel cell 12,390 Gcal, 3.3%, and PLB 90,620 Gcal, 23.9%. The CHP capacity was not reduced because an uneconomical alternative was found that required excessive operation of the PLB for insufficient heat production resulting from the CHP capacity reduction. On the other hand, in terms of indirect heat demand for the paper industry, which is the dominant industry, the optimal capacity of CHP, fuel cell, and photovoltaic combination is 25,000 kW, 5,000 kW, and 2,000 kW. The heat production was analyzed to be CHP 225,053 Gcal, 76.5%, fuel cell 11,215 Gcal, 3.8%, PLB 58,012 Gcal, 19.7%. However, the economic analysis results of the current electricity market and gas market confirm that the return on investment is impossible. However, we confirmed that the CHP Hybrid System, which combines CHP, fuel cell, and solar power, can improve management conditions of about KRW 9.3 billion annually for a single CHP system.