• Title/Summary/Keyword: Regional climate

Search Result 869, Processing Time 0.037 seconds

Integrating Forestry Offsets into a Domestic Emission Trading Scheme in Korea (해외 배출권 시장 사례 분석과 국내 배출권 시장 도입에 있어서 산림분야 참여에 관한 고찰)

  • Han, Ki-Joo;Youn, Yeo-Chang
    • Journal of Environmental Policy
    • /
    • v.8 no.1
    • /
    • pp.1-30
    • /
    • 2009
  • Emission trading schemes, exemplified by the EU Emission Trading Scheme, have been playing active roles in mitigating greenhouse gas emissions since the Kyoto Protocol employed an emission trading as one of the cost-effective mechanisms. The objective of this study is to investigate potential integration of forestry offsets in designing an emission trading scheme in South Korea. First, the study found feasible scopes in which forestry sectors can take part by analyzing five emission trading schemes: EU Emission Trading Scheme, Chicago Climate Exchange, New South Wales Greenhouse Gas Abatement Scheme, New Zealand Emission Trading Scheme, and Regional Greenhouse Gas Initiative. The rationale of including forestry offsets in a domestic emission trading scheme was derived from the fact that forestry offset credits can provide cost-effective ways for market participants to commit their emission targets and expand abatement activities through reducing greenhouse gases in other geographical locations as well as other industrial sectors. Even though forestry offset credits have risks induced by their technical complexities in terms of accounting, additionality, and leakage, the integration of forestry offset credits into an emission trading scheme would be able to provide positive opportunities both to forestry sectors and other industrial sectors. In addition, there are technical questions which need to be answered in order to maintain these opportunities.

  • PDF

An Ecological Interpretation on Korean Traditional Dwelling Houses and Their Landscape Gardens (전통주택과 조경공간의 생태학적 해석 - 동계(桐溪) 정온(鄭蘊) 가옥과 전주(全州) 최씨(崔氏) 종택을 중심으로 -)

  • So, Hyun-Su
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.37 no.1
    • /
    • pp.120-130
    • /
    • 2009
  • This study focuses on the methodology of an ecological interpretation of Korean traditional landscapes through both life-oriented philosophy and traditional Korean philosophy which are similar to ecology. Also, useful tools for discovering an ecological technique of formation based on the ecological thoughts in ancestors' life are shown. Ecological key words as interpretative tools on the traditional landscape replaced ecological concepts in Korean culture and landscape. There are 'Bonsung(本性; the original nature)', 'Chungjeol(中絶; moderation)', 'Hyoyul(效率; efficiency)', 'Sangsaeng(相生; symbiosis)', 'Jasaeng(自生; self-generation)', 'Chunghwa(中和; neutralization)', 'Bangtong(旁通; communication)', and 'Byuntong(變通; variableness)'. For the case study, the concepts of 'spatial structure', 'constructive elements in the traditional gardens', and 'structural elements in the dwelling houses' were extracted from $\ulcorner$Imwonkyeongjeji$\lrcorner$ as an interpretative subject. As a result, Jeongon house, Jongtaek of Choi's family(the first incoming resident) showed us an ecological technique of formation by interpretation on the composing elements. Namely, they are natural dwelling houses in harmony with natural conditions and delicate relational styles. Five kinds of ecological characteristics were exposed. They are: 1. land use method following natural features('本性' '相生' '中和'), 2. physical and spatial elements in a body with nature('中絶' '相生' '中和'), 3. sustainable circulation system by recycling limited resources('效率' '自生' '旁通'), 4. use of natural materials based on the regional climate ('中絶' '效率' '自生') and 5. plane and structural decision by microclimate('效率' '自生' '變通'). Consequently, the dwelling houses and their traditional gardens aimed at the consuming space of the efficient resources by utilizing and circulating natural energy more than different types of the traditional spaces.

Synoptic Climatic Patterns for Winter Extreme Low Temperature Events in the Republic of Korea (우리나라 겨울철 극한저온현상 발생 시 종관 기후 패턴)

  • Choi, Gwangyong;Kim, Junsu
    • Journal of the Korean Geographical Society
    • /
    • v.50 no.1
    • /
    • pp.1-21
    • /
    • 2015
  • The present study aims to characterize the synoptic climatic patterns of winter extreme low temperature events occurred in different regions of Korea based on daily temperature data observed at 61 weather stations under the supervision of the Korea Meteorological Administation and NCEP/NCAR reanalysis I data for the recent 40 years (1973~2012) period. Analyses of daily maximum and minimum temperatures below 10th percentile thresholds show that high frequencies of winter extreme low temperature events appear across the entire regions of Korea or in either the western or eastern half region divided by major mountain ridges at the 2~7 dayintervals particularly in the first half of the winter period (before mid-January). Composite analyses of surface synoptic climatic data including sea level pressure and wind vector reveal that 13 regional types of winter extreme low temperature events in Korea are closely associated with the relative location and intensity of both the Siberian high pressure and the Aleutian low pressure systems as well as major mountain ridges. Investigations of mid-troposphere (500 hPa) synoptic climatic charts demonstrate that the blocking-like upper troposphere low pressure system advecting the cold air from the Arctic toward the Korean Peninsula may provide favorable synoptic conditions for the outbreaks of winter extreme low temperature events in Korea. These results indicate that the monitoring of synoptic scale climatic systems in East Asia including the Siberian high pressure system, the Aleutian low pressure system and upper level blocking system is critical to the improvement of the predictability of winter extreme low temperature events in Korea.

  • PDF

Characteristics of Aerosol Mass Concentration and Chemical Composition of the Yellow and South Sea around the Korean Peninsula Using a Gisang 1 Research Vessel (기상1호에서 관측된 한반도 서해 및 남해상의 에어로졸 질량농도와 화학조성 특성)

  • Cha, Joo Wan;Ko, Hee-Jung;Shin, Beomchel;Lee, Hae-Jung;Kim, Jeong Eun;Ahn, Boyoung;Ryoo, Sang-Boom
    • Atmosphere
    • /
    • v.26 no.3
    • /
    • pp.357-372
    • /
    • 2016
  • Northeast Asian regions have recently become the main source of anthropogenic and natural aerosols. Measurement of aerosols on the sea in these regions have been rarely conducted since the experimental campaigns such as ACE-ASIA (Asian Pacific Regional Aerosol Characterization Experiment) in 2001. Research vessel observations of aerosol mass and chemical composition were performed on the Yellow and south sea around the Korean peninsula. The ship measurements showed six representative cases such as aerosol event and non-event cases during the study periods. On non-event cases, the anthropogenic chemical and natural soil composition on the Yellow sea were greater than those on the south sea. On aerosol event cases such as haze, haze with dust, and dust, the measured mass concentrations of anthropogenic chemical and element compositions were clearly changed by the events. In particular, methanesulfonate ($MSA^-$, $CH_3SO_3^-$), a main component of natural oceanic aerosol important for sulfur circulation on Earth, was first observed by the vessel in Korea, and its concentration on the Yellow sea was three times that on the south sea during the study period. Sea salt concentration important to chemical composition on the sea is related to wind speed. Coefficients of determination ($R^2$) between wind speed and sea salt concentration were 0.68 in $PM_{10}$ and 0.82 in $PM_{2.5}$. Maximum wave height was not found to be correlated to the sea salt concentration. When sea-salt comes into contact with pollutants, the total sea-salt mass is reduced, i.e., a loss of $Cl^-$ concentration from NaCl, the main chemical composing sea salt, is estimated by reaction with $HNO_3$(gas) and $H_2SO_4$(gas). The $Cl^-$ concentration loss by $SO_4^{2-}$ and $NO_3^-$ more easily increased for $PM_{10}$ compared to $PM_{2.5}$. The results of this study will be applied to verifying a dust-haze forecasting model. In addition, continued vessel measurements of aerosol data will become important to research for climate change studies in the future.

Physiology, genomics and molecular approaches for lmproving abiotic stress tolerance in rice and impacts on poor farmers

  • Ismail, Abdelbagi M.;Kumar, Arivnd;Singh, R.K.;Dixit, Shalabh;Henry, Amelia;Singh, Uma S.
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.7-7
    • /
    • 2017
  • Unfavorable weather and soil conditions reduce rice yield and land and water productivity, aggravating existing encounters of poverty and food insecurity. These conditions are foreseen to worsen with climate change and with the unceasing irrational human practices that progressively debilitate productivity despite global appeals for more food. Our understanding of plant responses to abiotic stresses is advancing and is complex, involving numerous critical processes - each controlled by several genetic factors. Knowledge of the physiological and molecular mechanisms involved in signaling, response and adaptation, and in some cases the genes involved, is advancing. Moreover, the genetic diversity being unveiled within cultivated rice and its wild relatives is providing ample resources for trait and gene discovery, and this is being scouted for rice improvement using modern genomics and molecular tools. Development of stress tolerant varieties is now being fast-tracked through the use of DNA markers and advanced breeding strategies. Large numbers of drought, submergence and salt tolerant varieties were commercialized over recent years in South and Southeast Asia and more recently in Africa. These varieties are making significant changes in less favorable areas, transforming lives of smallholder farmers - progress considered incredulous in the past. The stress tolerant varieties are providing assurance to farmers to invest in better management of their crops and the ability to adjust their cropping systems for even higher productivity and more income, sparking changes analogous to that of the first green revolution, which previously benefited only favorable irrigated and rainfed areas. New breeding tools using markers for multiple stresses made it possible to develop more resilient, higher yielding varieties to replace the aging and obsolete varieties still dominating these areas. Varieties with multiple stress tolerances are now becoming available, providing even better security for farmers and lessening their production risks even in areas affected by complex and overlapping stresses. The progress made in these less favorable areas triggered numerous favorable changes at the national and regional levels in several countries in Asia, including adjusting breeding and dissemination strategies to accelerate outreach and enabling changes at higher policy levels, creating a positive environment for faster progress. Exploiting the potential of these less productive areas for food production is inevitable, to meet the escalating global needs for more food and sustained production systems, at times when national resources are shrinking while demand for food is mounting. However, the success in these areas requires concerted efforts to make use of existing genetic resources for crop improvement and establishing effective evaluation networks, seed production systems, and seed delivery systems to ensure faster outreach and transformation.

  • PDF

An Economic Feasibility Study of AR CDM project in North Korea (북한 지역을 대상으로 한 조림 CDM 사업의 경제적 타당성 연구)

  • Han, Ki Joo;Youn, Yeo-Chang
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.3
    • /
    • pp.235-244
    • /
    • 2007
  • Potentials of AR CDM project in North Korea are assessed and feasible land area for AR CDM project is estimated. According to our estimation, There could be 515,000 hectares of forest lands deforested before 1990 in North Korea and 8,854 hectares at the regional level of Gae-sung City, which are eligible for AR CDM project, based on researches of satellite image analyses conducted from 1980's to 1990's. A baseline scenario assumed 44.73 tones of carbon stored in soil per hectare with no vegetation above ground remained during the project period following the default value of IPCC's Good Practice Guidance for LULUCF considering soil structure, climate and land use of the project area. The scenario also assumes that black rocust (Robinia pseudoacacia) is planted and the CDM project is implemented for 20 years. The costs for producing greenhouse gases CER (certified emission reduction) credits include costs of tree planting and forest management, and costs of project negotiation and transactions for issuing the credits. It is estimated that 376 tones of carbon dioxide per hectare can be accumulated and 503 temporary CER credits per hectare and 265 long-term CER credits per hectare could be produced during the project period. It is estimated to cost US$ 4.04 and US$ 7.67 to provide one unit of temporary credit and long-term credit, respectively. These values can be regarded as the cost of conferring emission commitment of a country or a private entity. However, it is not clear which option is better economically because the replacement periods are different in these two cases.

Analysis of Factors for Heating Period Changes among Greenhouse Grape Farms (시설포도 농가의 가온시기 변화에 미치는 요인 분석)

  • Choi, Don-Woo;Lim, Cheong-Ryong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.209-214
    • /
    • 2017
  • The purpose of this study is to identify the factors that led greenhouse grape farms to delay their heating periods after the coming into force of the Korea-Chile Free Trade Agreement (FTA). Panel data on the cropping (system) changes from 2004 through 2016 were used for the analysis. According to the panel logistic model, the estimated coefficient of the cultivation area was 0.0002, which was statistically significant at the 10% significance level, the estimated coefficient of grape imports was 1.4258, which was statistically significant at the 1% significance level, and the estimated coefficient of the regional dummy was 0.808, which was statistically significant at the 5% significance level. The results indicated that the use of wider cultivation areas, increase in grape imports, and colder climate(in the mid-northern part of Korea) increased the likelihood of delayed heating. The Korean government is offering direct payment programs and business closure support to the greenhouse grape farmers. While these actions can relieve the damage caused by the increase in grape imports, they will not provide the ultimate solution. Various support measures are needed, such as renewing the varieties to meet the changing demand of grape consumers, providing agricultural materials to reduce the heating expenses, and modernizing greenhouse facilities to improve the energy efficiency and reduce the costs.

Risk Assessment of Levee Embankment Applying Reliability Index (신뢰도 지수를 적용한 하천제방의 위험도 평가)

  • Ahn, Ki-Hong;Han, Kun-Yeun;Kim, Byung-Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.7
    • /
    • pp.547-558
    • /
    • 2009
  • General reliability assessment of levees embankment is performed with safety factors for rainfall characteristics and hydrologic and hydraulic parameters, based on the results of deterministic analysis. The safety factors are widely employed in the field of engineering handling model parameters and the diversity of material properties, but cannot explain every natural phenomenon. Uncertainty of flood analysis and related parameters by introducing stochastic method rather than deterministic scheme will be required to deal with extreme weather and unprecedented flood due to recent climate change. As a consequence, stochastic-method-based measures considering parameter uncertainty and related factors are being established. In this study, a variety of dimensionless cumulative rainfall curve for typhoon and monsoon season of July to September with generation method of stochastic temporal variation is generated by introducing Monte Carlo method and applied to the risk assessment of levee embankment using reliability index. The result of this study reflecting temporal and regional characteristics of a rainfall can be used for the establishment of flood defence measures, hydraulic structure design and analysis on a watershed.

The Impact of the Introduction of Hydrogen Energy into the Power Sector on the Economy and Energy (전력부문 수소에너지 도입의 경제 및 에너지부문 파급효과)

  • Lee, Sang-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.502-507
    • /
    • 2016
  • The transition from a carbon economy based on fossil fuels to a hydrogen economy is necessary to ensure energy security and to combat climate change. In order to pursue the transition to a hydrogen economy while achieving sustainable economic growth, a preliminary study into the establishment of the necessary infrastructure for the future hydrogen economy needs to be carried out. This study addresses the economic and environmental interactions in a dynamic computable general equilibrium (CGE) model focusing on the economic effects of the introduction of renewable energy into the Korean energy system. Firstly, the introduction of hydrogen results in an increase in the investment in hydrogen production and the reduction of the production cost, ultimately leading to GDP growth. Secondly, the mandatory introduction of renewable energy and associated government subsidies bring about a reduction in total demand. Additionally, the mandatory introduction of hydrogen energy into the power sector helps to reduce CO2 emissions through the transition from a carbon economy-based on fossil energy to a hydrogen economy. This means that hydrogen energy needs to come from non-fossil fuel sources in order for greenhouse gases to be effectively reduced. Therefore, it seems necessary for policy support to be strengthened substantially and for additional studies to be conducted into the production of hydrogen energy from renewable sources.

An Analysis of Flood Damage Influence by Urban Spatial Factors (도시공간적 요인에 의한 침수피해의 영향 분석)

  • Park, Kiyong;Oh, Hoo;Jeon, Won-Sik;Lee, Eui Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.238-250
    • /
    • 2020
  • This study investigated the long-term measures to minimize flood damage in the event of flooding in urban areas. The relationship between urban spatial factors and the impact of flood damage was analyzed, focusing on non-structural measures. The urban spatial factors were categorized into three parts: open space, disaster prevention facilities, and urbanization sectors. Multiple regression analysis was used to investigate how urban spatial factors influence flood damage. As a result of the analysis, the crucial factors, such as the reduced green areas and parks included in the open space sectors, resulted in an increased flood damage potential. The posterior factors, such as the population density and GRDP included in the urbanization sector concurrently led to an increase in the flood damage potential. Therefore, to better adapt to climate change, it is necessary to establish urban spatial plans strategically, such as green areas and parks. Meanwhile, the population density and GRDP are also the main factors causing flood damage. Therefore, when used appropriately in terms of resilience, it will serve as adaptations and recovery.