• Title/Summary/Keyword: Regional Environmental Assessment

Search Result 397, Processing Time 0.033 seconds

Analysis of Temporal Change in Soil Erosion Potential at Haean-myeon Watershed Due to Climate Change

  • Lee, Wondae;Jang, Chunhwa;Kum, Donghyuk;Jung, Younghun;Kang, Hyunwoo;Yang, Jae E.;Lim, Kyoung Jae;Park, Youn Shik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.2
    • /
    • pp.71-79
    • /
    • 2014
  • Climate change has been social and environmental issues, it typically indicates the trend changes of not only temperature but also rainfall. There is a need to consider climate changes in a long-term soil erosion estimation since soil loss in a watershed can be varied by the changes of rainfall intensity and frequency of torrential rainfall. The impacts of rainfall trend changes on soil loss, one of climate changes, were estimated using Sediment Assessment Tool for Effective Erosion Control (SATEEC) employing L module with current climate scenario and future climate scenario collected from the Korea Meteorological Administration. A 62 $km^2$ watershed was selected to explore the climate changes on soil loss. SATEEC provided an increasing trend of soil loss with the climate change scenarios, which were 182 ton/ha/year in 2010s, 169 ton/ha/year in 2020s, 192 ton/ha/year in 2030s,182 ton/ha/year in 2040s, and 218 ton/ha/year in 2050s. Moreover, it was found that approximately 90% of agricultural area in the watershed displayed the soil loss of 50 ton/ha/year which is exceeding the allow able soil loss regulation by the Ministry of Environment.

Accuracy Assessment of Sea Surface Temperature from NOAA/AVHRR Data in the Seas around Korea and Error Characteristics

  • Park, Kyung-Ae;Lee, Eun-Young;Chung, Sung-Rae;Sohn, Eun-Ha
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.6
    • /
    • pp.663-675
    • /
    • 2011
  • Sea Surface Temperatures (SSTs) using the equations of NOAA (National Oceanic and Atmospheric Administration) / NESDIS (National Environmental Satellite, Data, and Information Service) were validated over the seas around Korea with satellite-tracked drifter data. A total 1,070 of matchups between satellite data and drifter data were acquired for the period of 2009. The mean rms errors of Multi- Channel SSTs (MCSSTs) and Non-Linear SSTs (NLSSTs) were evaluated to, in most of the cases, less than $1^{\circ}C$. However, the errors revealed dependencies on atmospheric and oceanic conditions. For the most part, SSTs were underestimated in winter and spring, whereas overestimated in summer. In addition to the seasonal characteristics, the errors also presented the effect of atmospheric moist that satellite SSTs were estimated considerably low ($-1.8^{\circ}C$) under extremely dry condition ($T_{11{\mu}m}-T_{12{\mu}m}$ < $0.3^{\circ}C$), whereas the tendency was reversed under moist condition. Wind forcings induced that SSTs tended to be higher for daytime data than in-situ measurements but lower for nighttime data, particularly in the range of low wind speeds. These characteristics imply that the validation of satellite SSTs should be continuously conducted for diverse regional applications.

Analysis of Construction Plans of Rapid Charging Infrastructures based on Gas Stations in Rural Areas to Propagate Electric Vehicles (전기자동차 보급을 위한 농촌지역의 주유소 기반 급속 충전인프라 구축 방안 분석)

  • Kim, Solhee;Kim, Taegon;Suh, Kyo
    • Journal of Korean Society of Rural Planning
    • /
    • v.21 no.1
    • /
    • pp.19-28
    • /
    • 2015
  • As environmental concerns including climate change drive the strong regulations for car exhaust emissions, electric vehicles attract the public eye. The purpose of this study is to identify rural areas vulnerable for charging infrastructures based on the spatial distributions of the current gas stations and provide the target dissemination rates for promoting electric cars. In addition, we develop various scenarios for finding optimal way to expand the charging infrastructures through the administrative districts data including 11,677 gas stations, the number of whole national gas stations. Gas stations for charging infrastructures are randomly selected using the Monte Carlo Simulation (MCS) method. Evaluation criteria for vulnerability assessment include five considering the characteristic of rural areas. The optimal penetration rate is determined to 21% in rural areas considering dissemination efficiency. To reduce the vulnerability, the charging systems should be strategically installed in rural areas considering geographical characteristics and regional EV demands.

Assessment of Regional Climate Change in Urban and Rural Areas Based on Anthropogenic Climate Change and Urbanization (도시화에 따른 도시 및 농촌 지역의 국지적 기후변화 비교 분석)

  • Nam, Won-Ho;Yoon, Dong-Hyun;Hong, Eun-Mi;Kim, Taegon;Baigorria, Guillermo A.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.25-25
    • /
    • 2017
  • 국지 혹은 지역적인 기후의 특성은 지구규모 또는 종관규모에서의 온실가스 증가로 인한 온난화와 동시에 도시화 (urbanization)에 따른 열섬 현상 (heat island effect)을 포함한 인위적인 요소들이 복합적으로 작용하여 나타날 수 있다. 도시화에 따른 지면피복의 변화는 관측된 온난화 신호에 일정부분 기여하며, 도시 지역은 농촌 및 산림 지역과 비교하여 수문 및 기후학적 측면에서 지역 내 에너지수지 및 물수지의 특성이 상이하기 때문에, 지구온난화에 의한 전 지구적 현상과 도시화에 의한 국소적 현상을 구분하여 파악하는 것은 중요하다. 또한 향후 도시/비도시에 따른 도시화 편향 영향으로 인한 기후변화 예측의 편이를 분석하는데 필수적으로 요구된다. 본 연구에서는 급격한 도시화로 인한 인위적인 기후변화 (anthropogenic climate change)와 종관규모에서의 자연적 기후변화 (natural climate change or climate change)에 기인한 부분을 정량적으로 구분하고자 한다. 이를 위해 도시화의 정도가 서로 다른 도시 지역 및 농촌, 산림 지역을 선정하여 최근 50년간 (1966~2015년) 기상청 관측소의 기상자료와 각 관측지점별 인구수 및 인구증가/감소 추세를 비교함으로써 도시화율의 변화가 기상요소에 미치는 영향의 지역별 차이를 정량적으로 분석하였다.

  • PDF

Water Yield Computation and the Evaluation of Urbanization in the Bagmati Basin of Nepal

  • Bastola, Shiksha;Seong, Yeon-Jeong;Lee, Sanghyup;Jung, Younghun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.106-106
    • /
    • 2018
  • Ecosystem service valuation is a crucial step for the sustainable management of watershed. In the context of various ecosystem services provided by watershed, this study, particularly deals with water yield computation in Bagmati Basin of Nepal. The water availability per population in Bagmati Basin is lowest compared to other basins in Nepal. Also, the rate of urbanization is rapidly growing over a decade. In this regard, the objectives of this study are 1) to compute the total water yield of the basin along with computation on a sub-watershed scale, and 2) Study the impacts of land use change on water yield based on CLUE-S model. For the study, Integrated Valuation of Environmental Services and Tradeoffs (InVEST), a popular model for ecosystem service assessment based on Budyko hydrological method is used to compute water yield. As well, CLUE-S model is used to study land use change, which is further related to study variation on water yield. The sub-watershed wise outcome of the study is expected to provide the guidelines for the effective and economic management of a watershed on a regional scale.

  • PDF

Effect of Elevated CO2 and Temperature on Growth, Yield and Physiological Responses of Major Rice Cultivars by Region in South Korea

  • Hae-Ran Kim;Young-Han You;Heon-Mo Jeong
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.4
    • /
    • pp.341-351
    • /
    • 2022
  • The physiological characteristics, growth, and yield of each regional rice variety ('Odaebyeo', 'Saechucheong', 'Ilmibyeo') were investigated depending on the impact of changes in temperature and CO2 concentration. Experiments were conducted with a control group, which reflected atmospheric CO2 concentration and temperature, and treatment groups, in which the CO2 concentration and temperature were increased by 250 ppm and 2.0℃ from those in the control group. The results showed that the increase in CO2 concentration and temperature reduced the growth and yield of the rice 'Odaebyeo', but did not substantially change the productivity of the 'Saechucheong' and 'Ilmibyeo'. The increase in CO2 concentration and temperature increased stomatal conductance and rate of transpiration of the 'Odaebyeo' variety, thereby decreasing its water use efficiency (WUE). In contrast, the increase in CO2 concentration and temperature increased the photosynthetic rate and WUE of the 'Saechucheong' and 'Ilmibyeo' varieties. The gradual change in climate is considered to directly affect growth and development of rice and diversely affect the productivity of each variety. Therefore, it is necessary to implement technological development, select regionally optimal rice varieties, develop new rice varieties, as well as conduct long-term monitoring of each rice variety for climate adaptation to counter global warming.

Review and Proposition of Biological Indicators for a New Ecological Grading System of Tidal Flats in Korea (한국의 갯벌 생태등급도 개발을 위한 생물학적 지시자의 검토와 제안)

  • Yoo, Jae-Won;Lee, Chang-Gun;Kho, Byung-Seol;Lee, Si-Wan;Han, Dong-Uk;Choi, Keun-Hyung;Kim, Chang-Soo;Hong, Jae-Sang
    • Ocean and Polar Research
    • /
    • v.33 no.1
    • /
    • pp.85-97
    • /
    • 2011
  • The tidal flats of Korea today have reduced by 40% in size compared to 1964. To manage this important habitat properly, development of well-organized and nationwide-applicable grading systems is required. There have been several assessment systems proposed previously in Korea, but they are critically flawed in that selected biological indicators are not adequate and grading criteria are obscure and arbitrary. We reviewed the indicators used in these previous evaluation systems (e.g., diversity indices, quantity and quality of benthic macrofauna, halophytes, water birds, etc.) and subsequently proposed new indicators and an improved grading scheme. For the quantitative assessment of macrobenthic community, biomass reflecting production and ecosystem function is recommended over density, which is much less discriminatory among habitats. Of biodiversity indices used, within-, between-habitat and regional biodiversity indices that accurately reflect sampling efforts are suggested. In addition, we proposed to include species rarity, ecosystem engineers, and the ecological quality index ISEP (Inverse function of Shannon-Wiener Evenness Proportion). As for halophytes, their low spatial coverage on benthic habitat suggests that their presence can be used as an ecological indicator of benthic habitat, regardless of their protective status. We stress the need to introduce 1) quantile approach for quantitative indicators (e.g., diversity, biomass, etc.) in relation to grading, 2) presence-absence approach for spatial or aggregate indicators (e.g., boundaries of halophytes and feeding ground of water birds) and 3) benthic habitat mapping that combines all of these indicators.

Potential Accuracy of GNSS PPP- and PPK-derived Heights for Ellipsoidally Referenced Hydrographic Surveys: Experimental Assessment and Results

  • Yun, Seonghyeon;Lee, Hungkyu;Choi, Yunsoo;Ham, Geonwoo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.4
    • /
    • pp.211-221
    • /
    • 2017
  • Ellipsodially referenced survey (ERS) is considered as one of the challenging issues in the hydrographic surveys due to the fact that the bathymetric data collected by this technique can be readily transformed either to the geodetic or the chart datum by application of some geoscientific models. Global Navigation Satellite Systems (GNSS) is a preferred technique to determine the ellipsoidal height of a vessel reference point (RP) because it provides cost-effective and unprecedentedly accurate positioning solutions. Especially, the GNSS-derived heights include heave and dynamic draft of a vessel, so as for the reduced bathymetric solutions to be potentially free from these corrections. Although over the last few decades, differential GNSS (DGNSS) has been widely adopted in the bathymetric surveys, it only provides limited accuracy of the vertical component. This technical barrier can be effectively overcome by adopting the so-called GNSS carrier phase (CPH) based techniques, enhancing accuracy of the height solution up to few centimeters. From the positioning algorithm standpoint, the CPH-based techniques are categorized under absolute and relative positioning in post-processing mode; the former is precise point positioning (PPP) correcting errors by the global or regional models, the latter is post-processed kinematic positioning (PPK) that uses the differencing technique to common error sources between two receivers. This study has focused on assessment of achievable accuracy of the ellipsoidal heights obtained from these CPH-based techniques with a view to their applications to hydrographic surveys where project area is, especially, few tens to hundreds kilometers away from the shore. Some field trials have been designed and performed so as to collect GNSS observables on static and kinematic mode. In this paper, details of these tests and processed results are presented and discussed.

Impact Assessment between Heatwave and Drought Based on PLS-SEM (부분최소제곱 구조방정식(PLS-SEM)을 이용한 폭염과 가뭄의 영향평가)

  • Yoo, Jiyoung;Kim, Jang-Gyeong;Han, Jeongwoo;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.2
    • /
    • pp.113-121
    • /
    • 2021
  • The occurrence mechanisms of heatwave have been conventionally studied at a synoptic scale. However, the implications of precedent droughts on the following up heatwave occurrences have not been elucidated and are important to address the complex causal mechanisms of heatwaves. Therefore, this study evaluated the causality and implication of the seasonally antecedent droughts to summer heatwaves that occurred for 46 years since 1974 using partial least squares-structural equation modeling (PLS-SEM). The resulting contribution of winter (spring and summer) droughts to summer heatwaves for Seoul-Gyeonggi, Gangwon, and Chungcheong provinces were 37 % (29 % and 22 %), 21 % (18 % and 29 %), and 17 % (8 % and 38 %), respectively. This is due to the regional variability of seasonal drought impacts. Furthermore, Gangwon and Chungcheong provinces, which have a higher level of impacts of summer droughts to summer heatwaves, are more likely to be exposed to the compound drought-heatwave damages compared to Seoul-Gyeonggi province, which has relatively a low-level impact of summer drought.

Efficiency Evaluation of Vegetative Filter Strip for Non-point Source Pollutant at Dense Upland Areas - Focused on Non-point Source Management Area Mandae, Gaa, and Jaun Basins - (고랭지밭 밀집지역 초생대의 비점오염 저감 효율 평가 - 비점오염원 관리지역을 중심으로 (만대지구, 가아지구, 자운지구) -)

  • Jeong, Yeonji;Lee, Dongjun;Kang, Hyunwoo;Jang, Won Seok;Hong, Jiyoung;Lim, Kyoung Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.4
    • /
    • pp.1-10
    • /
    • 2022
  • A vegetative filter strip (VFS) is one of the best management practices (BMPs) to reduce pollutant loads. This study aims to assess the effectiveness of VFS in dense upland field areas. The study areas are agricultural fields in the Maedae (MD), Gaa (GA), and Jaun (JU) watersheds, where severe sediment yields have occurred and the Korean government has designated them as non-point management regions. The agricultural fields were divided into three or four clusters for each watershed based on their slope, slope length, and area (e.g., MD1, MD2). To assess the sediment trapping (STE) and pesticide reduction efficiency (PRE) of VFS, the Vegetative Filter Strip Modeling System (VFSMOD) was applied with three different scenarios (SC) (SC1: VFS with rye vegetation; SC2: VFS with rye vegetation and a gentle slope in VFS range; and SC3: VFS with grass mixture). For SC1, there were relatively short slope lengths and small areas in the MD1 and GA3 clusters, and they showed higher pollutant reduction (STE>50%, PRE>25%). For SC2 and SC3, all clusters in GA and some clusters (MD1 and MD3) in MD show higher pollutant reduction (>25%), while the uplands in JU still show a lower pollutant (<25%). With correlation analysis between geographic characteristics and VFS effectiveness slope and slope length showed relative higher correlations with the pollutant efficiency than a area. The results of this study implied that slope and slope length should be considered to find suitable upland conditions for VFS installations.