• Title/Summary/Keyword: Region-of-interest (ROI) extraction

Search Result 65, Processing Time 0.023 seconds

An Automatic ROI Extraction and Its Mask Generation based on Wavelet of Low DOF Image (피사계 심도가 낮은 이미지에서 웨이블릿 기반의 자동 ROI 추출 및 마스크 생성)

  • Park, Sun-Hwa;Seo, Yeong-Geon;Lee, Bu-Kweon;Kang, Ki-Jun;Kim, Ho-Yong;Kim, Hyung-Jun;Kim, Sang-Bok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.3
    • /
    • pp.93-101
    • /
    • 2009
  • This paper suggests a new algorithm automatically searching for Region-of-Interest(ROI) with high speed, using the edge information of high frequency subband transformed with wavelet. The proposed method executes a searching algorithm of 4-direction object boundary by the unit of block using the edge information, and detects ROIs. The whole image is splitted by $64{\times}64$ or $32{\times}32$ sized blocks and the blocks can be ROI block or background block according to taking the edges or not. The 4-directions searche the image from the outside to the center and the algorithm uses a feature that the low-DOF image has some edges as one goes to center. After searching all the edges, the method regards the inner blocks of the edges as ROI, and makes the ROI masks and sends them to server. This is one of the dynamic ROI method. The existing methods have had some problems of complicated filtering and region merge, but this method improved considerably the problems. Also, it was possible to apply to an application requiring real-time processing caused by the process of the unit of block.

Tear Extraction from Ultrasonic Images of Shoulder using Fuzzy Stretching and SOM Based Quantization (퍼지 스트레칭과 SOM 기반 양자화를 이용한 어깨 초음파 영상에서의 인대 손상 영역 추출)

  • Kim, Yoon-Ho;Kim, Min-Ha;Song, Yu-Seon;Kim, Kwang-Beak
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2017.01a
    • /
    • pp.9-12
    • /
    • 2017
  • 본 논문에서는 어깨 초음파 영상을 분석하여 인대 손상(Tear) 영역을 추출하는 방법을 제안한다. 제안된 방법은 초음파 영상에서 ROI(Region of Interest) 영역을 추출하고 추출된 ROI 영역에서 사다리꼴 형태의 소속 함수를 적용한 퍼지 스트레칭 기법을 이용하여 명암 대비를 높인다. 명암 대비가 조정된 ROI 영역에서 밝기 평균 이진화 기법을 적용하여 ROI 영역을 이진화한다. 이진화가 적용된 ROI 영역에서 워터쉐드 기법을 적용하여 연골과 힘줄의 후보 영역들을 추출한다. 추출된 연골과 힘줄의 후보 영역들 중에서 위에서 아래로 스캔하여 수평 너비가 가장 큰 영역에 해당하는 힘줄 영역의 상단 경계선을 추출한다. 그리고 아래에서 위로 스캔하여 수평 너비가 가장 큰 영역의 상단 경계에 스플라인 곡선을 적용하여 연골 영역의 상단 경계선을 추출한다. 힘줄 영역의 상단 경계선과 연골 영역의 상단 경계선 양 끝에 2차 함수 곡선을 적용하여 곡선 사이의 양자화할 영역을 추출한 후, SOM 기법을 적용하여 인대 손상 후보 영역을 양자화한다. 양자화된 인대 손상 후보 영역을 분석하여 어깨 힘줄의 손상 영역과 비손상 영역을 구분하고 인대 손상(Tear) 영역을 추출한다. 제안된 방법을 어깨 힘줄이 있는 초음파 영상을 대상으로 실험한 결과, 인대 손상(Tear) 영역이 비교적 정확히 추출되었다.

  • PDF

A Wavelet-Based Watermarking Scheme of Digital Image Using ROI Method (ROI를 이용한 웨이브렛 기반 디지털 영상의 워터마킹 기법)

  • Kim, Tae-Jung;Hong, Choong-Seon;Sung, Ji-Hyun;Hwang, Jae-Ho;Lee, Dae-Young
    • The KIPS Transactions:PartB
    • /
    • v.11B no.3
    • /
    • pp.289-296
    • /
    • 2004
  • General watermarking techniques tend not to consider intrinsic characteristics of image, so that watermarks are embeded to entire images. In this paper, we present a watermarking algorithm based on wavelet domain, and the watermark is embedded into large coefficients in region of interest(ROI) being based on principle of multi-threshold watermark coding(MTWC) for robust watermark insertion. We try to accomplish both image duality and robustness using human visual system(HVS). The watermarks are embedded in middle frequency bands because the distortion degree of watermarked images appears to be less than lower frequency bands, and the embedded watermarks in the middle bands showed high extraction ratios after some distortion. The watermarks are consisted of pseudo random sequences and detected using Cox's similarity mesurement.

3D Visual Attention Model and its Application to No-reference Stereoscopic Video Quality Assessment (3차원 시각 주의 모델과 이를 이용한 무참조 스테레오스코픽 비디오 화질 측정 방법)

  • Kim, Donghyun;Sohn, Kwanghoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.4
    • /
    • pp.110-122
    • /
    • 2014
  • As multimedia technologies develop, three-dimensional (3D) technologies are attracting increasing attention from researchers. In particular, video quality assessment (VQA) has become a critical issue in stereoscopic image/video processing applications. Furthermore, a human visual system (HVS) could play an important role in the measurement of stereoscopic video quality, yet existing VQA methods have done little to develop a HVS for stereoscopic video. We seek to amend this by proposing a 3D visual attention (3DVA) model which simulates the HVS for stereoscopic video by combining multiple perceptual stimuli such as depth, motion, color, intensity, and orientation contrast. We utilize this 3DVA model for pooling on significant regions of very poor video quality, and we propose no-reference (NR) stereoscopic VQA (SVQA) method. We validated the proposed SVQA method using subjective test scores from our results and those reported by others. Our approach yields high correlation with the measured mean opinion score (MOS) as well as consistent performance in asymmetric coding conditions. Additionally, the 3DVA model is used to extract information for the region-of-interest (ROI). Subjective evaluations of the extracted ROI indicate that the 3DVA-based ROI extraction outperforms the other compared extraction methods using spatial or/and temporal terms.

Development of a Software Program for the Automatic Calculation of the Pulp/Tooth Volume Ratio on the Cone-Beam Computed Tomography

  • Lee, Hoon-Ki;Lee, Jeong-Yun
    • Journal of Oral Medicine and Pain
    • /
    • v.41 no.3
    • /
    • pp.85-90
    • /
    • 2016
  • Purpose: The aim of this study was to develop an automated software to extract tooth and pulpal area from sectional cone-beam computed tomography (CBCT) images, which can guarantee more reproducible, objective and time-saving way to measure pulp/tooth volume ratio. Methods: The software program was developed using MATLAB (MathWorks). To determine the optimal threshold for the region of interest (ROI) extraction, user interface to adjust the threshold for extraction algorithm was added. Default threshold was determined after several trials to make the outline of extracted ROI fitting to the tooth and pulpal outlines. To test the effect of starting point location selected initially in the pulpal area on the final result, pulp/tooth volume ratio was calculated 5 times with different 5 starting points. Results: Navigation interface is composed of image loading, zoom-in, zoom-out, and move tool. ROI extraction process can be shown by check in the option box. Default threshold is adjusted for the extracted tooth area to cover whole tooth including dentin, cementum, and enamel. Of course, the result can be corrected, if necessary, by the examiner as well as by changing the threshold of density of hard tissue. Extracted tooth and pulp area are reconstructed three-dimensional (3D) and pulp/tooth volume ratio is calculated by voxel counting on reconstructed model. The difference between the pulp/tooth volume ratio results from the 5 different extraction starting points was not significant. Conclusions: In further studies based on a large-scale sample, the most proper threshold to present the most significant relationship between age and pulp/tooth volume ratio and the tooth correlated with age the most will be explored. If the software can be improved to use whole CBCT data set rather than just sectional images and to detect pulp canal in the original 3D images generated by CBCT software itself, it will be more promising in practical uses.

An Efficient Image Retrieval Method Using Informations for Location and Direction of Outdoor Images (outdoor image의 촬영 위치와 방향 정보를 이용한 효율적인 영상 검색방법)

  • Han, Gi-Tae;Suh, Chang-Duk
    • The KIPS Transactions:PartB
    • /
    • v.14B no.5
    • /
    • pp.329-336
    • /
    • 2007
  • In this paper we propose both the construction of image DB including information on the shooting location and direction of the captured outdoor images and the efficient retrieval method from the DB. Furthermore, for the automatic extraction of the location and direction information, we suggest to have the Digital Camera equipped with an expandable GPS modulo which has a function to calculate the location and direction and also to utilize GPS IFD tags in the EXIF. Then that will make it possible for us to retrieve quickly and precisely the target image with its geography and other objects on the ground included. In the previous retrieval method based only on the location, we eel some extra useless images due to the fact that all the images in the ROI(Region Of Interest) are searched on one condition, radius. However, with the proposed method in this paper, we can not only retrieve all the images selectively within the ROI but also achieve nearly 100% of precision when we search for the target images within DOI(Direction Of Interest) with another condition, direction, added. Applying this method to an image retrieval system, we can classify or retrieve natural images based on the location and direction information, which, in turn, will be vitally useful to diverse industrial fields such as disaster alarm system, fire and disaster prevention system, traffic information system, and so forth.

Color-Depth Combined Semantic Image Segmentation Method (색상과 깊이정보를 융합한 의미론적 영상 분할 방법)

  • Kim, Man-Joung;Kang, Hyun-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.3
    • /
    • pp.687-696
    • /
    • 2014
  • This paper presents a semantic object extraction method using user's stroke input, color, and depth information. It is supposed that a semantically meaningful object is surrounded with a few strokes from a user, and has similar depths all over the object. In the proposed method, deciding the region of interest (ROI) is based on the stroke input, and the semantically meaningful object is extracted by using color and depth information. Specifically, the proposed method consists of two steps. The first step is over-segmentation inside the ROI using color and depth information. The second step is semantically meaningful object extraction where over-segmented regions are classified into the object region and the background region according to the depth of each region. In the over-segmentation step, we propose a new marker extraction method where there are two propositions, i.e. an adaptive thresholding scheme to maximize the number of the segmented regions and an adaptive weighting scheme for color and depth components in computation of the morphological gradients that is required in the marker extraction. In the semantically meaningful object extraction, we classify over-segmented regions into the object region and the background region in order of the boundary regions to the inner regions, the average depth of each region being compared to the average depth of all regions classified into the object region. In experimental results, we demonstrate that the proposed method yields reasonable object extraction results.

A Study on the Barcode ROI Extraction Method using Block Texture in Parcel Image (블록 텍스쳐를 이용한 소포 영상에서 바코드 ROI(Region Of Interest) 추출에 관한 연구)

  • Park, Moon-Sung;Choi, Ho-Seok;Kim, Jin-Suk;Kim, Hea-Kyu
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.04b
    • /
    • pp.1131-1134
    • /
    • 2002
  • 본 논문에서는 블록 다중 텍스쳐 영상으로부터 바코드 영역을 추출하기 위한 한 방법을 제안한다. 일반적으로 택배 등의 물류 처리에서 사용되는 바코드는 직선 형태의 바로 구성되며, 물체의 윗면에 붙여진 바코드의 방향에 따라 바의 방향은 수직, 수평, 대각선의 방향으로 나타난다. 따라서, 제안된 방법에서는 다양한 텍스쳐의 특징 벡터를 사용하여 바코드의 특징을 검출한다. 또한 처리 시간의 단축을 위하여 영상을 일정한 블록으로 분할한 후에 국부 특징 마스크를 사용하여 텍스쳐 특징 벡터를 산출하고, 우편물 영상에서 각각의 특징에 따른 분류를 통해 바코드 영역을 결정한다.

  • PDF

Correction of Rotated Region in Medical Images Using SIFT Features (SIFT 특징을 이용한 의료 영상의 회전 영역 보정)

  • Kim, Ji-Hong;Jang, Ick-Hoon
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.1
    • /
    • pp.17-24
    • /
    • 2015
  • In this paper, a novel scheme for correcting rotated region in medical images using SIFT(Scale Invariant Feature Transform) algorithm is presented. Using the feature extraction function of SIFT, the rotation angle of rotated object in medical images is calculated as follows. First, keypoints of both reference and rotated medical images are extracted by SIFT. Second, the matching process is performed to the keypoints located at the predetermined ROI(Region Of Interest) at which objects are not cropped or added by rotating the image. Finally, degrees of matched keypoints are calculated and the rotation angle of the rotated object is determined by averaging the difference of the degrees. The simulation results show that the proposed scheme has excellent performance for correcting the rotated region in medical images.

Evaluation of Grid-Based ROI Extraction Method Using a Seamless Digital Map (연속수치지형도를 활용한 격자기준 관심 지역 추출기법의 평가)

  • Jeong, Jong-Chul
    • Journal of Cadastre & Land InformatiX
    • /
    • v.49 no.1
    • /
    • pp.103-112
    • /
    • 2019
  • Extraction of region of interest for satellite image classification is one of the important techniques for efficient management of the national land space. However, recent studies on satellite image classification often depend on the information of the selected image in selecting the region of interest. This study propose an effective method of selecting the area of interest using the continuous digital topographic map constructed from high resolution images. The spatial information used in this research is based on the digital topographic map from 2013 to 2017 provided by the National Geographical Information Institute and the 2015 Sejong City land cover map provided by the Ministry of Environment. To verify the accuracy of the extracted area of interest, KOMPSAT-3A satellite images were used which taken on October 28, 2018 and July 7, 2018. The baseline samples for 2015 were extracted using the unchanged area of the continuous digital topographic map for 2013-2015 and the land cover map for 2015, and also extracted the baseline samples in 2018 using the unchanged area of the continuous digital topographic map for 2015-2017 and the land cover map for 2015. The redundant areas that occurred when merging continuous digital topographic maps and land cover maps were removed to prevent confusion of data. Finally, the checkpoints are generated within the region of interest, and the accuracy of the region of interest extracted from the K3A satellite images and the error matrix in 2015 and 2018 is shown, and the accuracy is approximately 93% and 72%, respectively. The accuracy of the region of interest can be used as a region of interest, and the misclassified region can be used as a reference for change detection.