A Wavelet-Based Watermarking Scheme of Digital Image Using ROI Method

ROI를 이용한 웨이브렛 기반 디지털 영상의 워터마킹 기법

  • Published : 2004.06.01


General watermarking techniques tend not to consider intrinsic characteristics of image, so that watermarks are embeded to entire images. In this paper, we present a watermarking algorithm based on wavelet domain, and the watermark is embedded into large coefficients in region of interest(ROI) being based on principle of multi-threshold watermark coding(MTWC) for robust watermark insertion. We try to accomplish both image duality and robustness using human visual system(HVS). The watermarks are embedded in middle frequency bands because the distortion degree of watermarked images appears to be less than lower frequency bands, and the embedded watermarks in the middle bands showed high extraction ratios after some distortion. The watermarks are consisted of pseudo random sequences and detected using Cox's similarity mesurement.

일반적인 워터마킹 기술들은 영상의 특성을 고려하지 않은 채 신체 책인 영상에 워터마크를 삽입하는 경우가 많다 본 논문에서는 워터마킹 알고리즘을 웨이브렛을 기반으로 구현을 하였으며, 견고한 워터마크 삽입을 위해 Multi-Threshold Watermark Coding(MTWC)의 원리에 기초하여 Region of Interest(ROI)라고 불리우는 영상의 영역에 큰 계수를 찾아 워터마크를 삽입하게 된다. 이때 Human Visual System(HVS)을 이용하여 견고성과 비가시성의 향상을 도모하였다. 워터마크 삽입대역은 중주파 대역에 삽입을 하게 되는데 중주파 대역에 삽입한 워터마크는 어떠한 영상 처리과정 후에도 높은 비율의 추출을 보였으며, 워터마크가 삽입된 영상의 왜곡정도도 다른 대역보다 상대적으로 적게 나타나므로 중주파 대역에 워터마크를 삽입하였다. 워터마크는 의사 랜덤 시퀀스(Pseudo Random Sequence)로 구성되어 있고 워터마크의 검출은 Cox의 유사도 측정식을 이용하여 워터마크의 삽입여부를 판단한다



  1. I. J. Cox, j. Kilian, T. Leighton and T. Shamoon, 'Secure Spread Spectrum Watermarking for Multimedia,' IEEE Trans. on Image Processing, Vol.6, No.12, pp.1673-1687, Dec., 1997
  2. I. Cox and M. L. Miller, 'A Review of Watermarking and the Importance of Perceptual Modeling,' in Proc. Electronic imaging, Feb., 1997
  3. A. S. Lewis and G. Knowles, 'Image Compression Using the 2-D Wavelet Transform,' IEEE Trans. Image Proc e..sing; Vol.1, No.2, pp.244-250, Apr., 1992
  4. M. Barni, F. Bartolini and A. Piva, 'Improved Wavelet Based Watermarking Through Pixel Wise Masking,' IEEE Trans. Image Processing, Vol.10, No.3, pp.783-791, May, 2001
  5. H,J. Wang and Jay Kuo, 'A Multi Threshold Wavelet Coder For High Fidelity Image Compression,' IEEE Image Processing, Vol.1, No.2, pp.652-655, 1997
  6. M. Antonini, M. Barlaud. P. Mathieu and I. Daubechies, 'Image Coding Using Wavelet Transform,' IEEE Trans. Image Processing, Vol.1, No.2, pp.205-220, Apr., 1992
  7. J. D. Villasenor, B. Belzer and J Liao, 'Wavelet Fiter Evaluation for Image Compression,' IEEE Trans. Image Processing, Vol.4, No.8, pp.1053-1060, Aug., 1995
  8. G. Caronni, 'ssuring Ownership Rights for Digital Images,' in Proc. Reliable IT Systems, VIS '95, Vieweg Publishing Company, pp.1074-1077, 1995
  9. B. M. Macq and J-J Quisquater, 'Cryptology for digital TV broadcasting,' Proc. of the IEEE, Vol.7, No.2, 1995
  10. W. Bender, D. Gruhl and N. Morimoto, 'Techniques for Data Hiding,' In Proc. of SPIE, Vol.2420, pp.1088, 1995
  11. Yiwei Wang and John F. Doherty and Robert E., 'A Wavelet-based Watermarking Algorithm for Ownership Verification of Digital Images,' IEEE Transactions on Image Processing, Vol.3, No.9, 2002
  12. Yu Jin Zhang, Ting Chen and Juan Li, 'Embedding Watermarks into Both DC and AC Components of DCT, Proceeding of SPIE, 2001