• Title/Summary/Keyword: Region-based Convolutional Neural Network

Search Result 66, Processing Time 0.023 seconds

The application of convolutional neural networks for automatic detection of underwater object in side scan sonar images (사이드 스캔 소나 영상에서 수중물체 자동 탐지를 위한 컨볼루션 신경망 기법 적용)

  • Kim, Jungmoon;Choi, Jee Woong;Kwon, Hyuckjong;Oh, Raegeun;Son, Su-Uk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.2
    • /
    • pp.118-128
    • /
    • 2018
  • In this paper, we have studied how to search an underwater object by learning the image generated by the side scan sonar in the convolution neural network. In the method of human side analysis of the side scan image or the image, the convolution neural network algorithm can enhance the efficiency of the analysis. The image data of the side scan sonar used in the experiment is the public data of NSWC (Naval Surface Warfare Center) and consists of four kinds of synthetic underwater objects. The convolutional neural network algorithm is based on Faster R-CNN (Region based Convolutional Neural Networks) learning based on region of interest and the details of the neural network are self-organized to fit the data we have. The results of the study were compared with a precision-recall curve, and we investigated the applicability of underwater object detection in convolution neural networks by examining the effect of change of region of interest assigned to sonar image data on detection performance.

Autonomous pothole detection using deep region-based convolutional neural network with cloud computing

  • Luo, Longxi;Feng, Maria Q.;Wu, Jianping;Leung, Ryan Y.
    • Smart Structures and Systems
    • /
    • v.24 no.6
    • /
    • pp.745-757
    • /
    • 2019
  • Road surface deteriorations such as potholes have caused motorists heavy monetary damages every year. However, effective road condition monitoring has been a continuing challenge to road owners. Depth cameras have a small field of view and can be easily affected by vehicle bouncing. Traditional image processing methods based on algorithms such as segmentation cannot adapt to varying environmental and camera scenarios. In recent years, novel object detection methods based on deep learning algorithms have produced good results in detecting typical objects, such as faces, vehicles, structures and more, even in scenarios with changing object distances, camera angles, lighting conditions, etc. Therefore, in this study, a Deep Learning Pothole Detector (DLPD) based on the deep region-based convolutional neural network is proposed for autonomous detection of potholes from images. About 900 images with potholes and road surface conditions are collected and divided into training and testing data. Parameters of the network in the DLPD are calibrated based on sensitivity tests. Then, the calibrated DLPD is trained by the training data and applied to the 215 testing images to evaluate its performance. It is demonstrated that potholes can be automatically detected with high average precision over 93%. Potholes can be differentiated from manholes by training and applying a manhole-pothole classifier which is constructed using the convolutional neural network layers in DLPD. Repeated detection of the same potholes can be prevented through feature matching of the newly detected pothole with previously detected potholes within a small region.

Sparse Feature Convolutional Neural Network with Cluster Max Extraction for Fast Object Classification

  • Kim, Sung Hee;Pae, Dong Sung;Kang, Tae-Koo;Kim, Dong W.;Lim, Myo Taeg
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2468-2478
    • /
    • 2018
  • We propose the Sparse Feature Convolutional Neural Network (SFCNN) to reduce the volume of convolutional neural networks (CNNs). Despite the superior classification performance of CNNs, their enormous network volume requires high computational cost and long processing time, making real-time applications such as online-training difficult. We propose an advanced network that reduces the volume of conventional CNNs by producing a region-based sparse feature map. To produce the sparse feature map, two complementary region-based value extraction methods, cluster max extraction and local value extraction, are proposed. Cluster max is selected as the main function based on experimental results. To evaluate SFCNN, we conduct an experiment with two conventional CNNs. The network trains 59 times faster and tests 81 times faster than the VGG network, with a 1.2% loss of accuracy in multi-class classification using the Caltech101 dataset. In vehicle classification using the GTI Vehicle Image Database, the network trains 88 times faster and tests 94 times faster than the conventional CNNs, with a 0.1% loss of accuracy.

Artificial Neural Network Method Based on Convolution to Efficiently Extract the DoF Embodied in Images

  • Kim, Jong-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.3
    • /
    • pp.51-57
    • /
    • 2021
  • In this paper, we propose a method to find the DoF(Depth of field) that is blurred in an image by focusing and out-focusing the camera through a efficient convolutional neural network. Our approach uses the RGB channel-based cross-correlation filter to efficiently classify the DoF region from the image and build data for learning in the convolutional neural network. A data pair of the training data is established between the image and the DoF weighted map. Data used for learning uses DoF weight maps extracted by cross-correlation filters, and uses the result of applying the smoothing process to increase the convergence rate in the network learning stage. The DoF weighted image obtained as the test result stably finds the DoF region in the input image. As a result, the proposed method can be used in various places such as NPR(Non-photorealistic rendering) rendering and object detection by using the DoF area as the user's ROI(Region of interest).

Mask Region-Based Convolutional Neural Network (R-CNN) Based Image Segmentation of Rays in Softwoods

  • Hye-Ji, YOO;Ohkyung, KWON;Jeong-Wook, SEO
    • Journal of the Korean Wood Science and Technology
    • /
    • v.50 no.6
    • /
    • pp.490-498
    • /
    • 2022
  • The current study aimed to verify the image segmentation ability of rays in tangential thin sections of conifers using artificial intelligence technology. The applied model was Mask region-based convolutional neural network (Mask R-CNN) and softwoods (viz. Picea jezoensis, Larix gmelinii, Abies nephrolepis, Abies koreana, Ginkgo biloba, Taxus cuspidata, Cryptomeria japonica, Cedrus deodara, Pinus koraiensis) were selected for the study. To take digital pictures, thin sections of thickness 10-15 ㎛ were cut using a microtome, and then stained using a 1:1 mixture of 0.5% astra blue and 1% safranin. In the digital images, rays were selected as detection objects, and Computer Vision Annotation Tool was used to annotate the rays in the training images taken from the tangential sections of the woods. The performance of the Mask R-CNN applied to select rays was as high as 0.837 mean average precision and saving the time more than half of that required for Ground Truth. During the image analysis process, however, division of the rays into two or more rays occurred. This caused some errors in the measurement of the ray height. To improve the image processing algorithms, further work on combining the fragments of a ray into one ray segment, and increasing the precision of the boundary between rays and the neighboring tissues is required.

Application Research on Obstruction Area Detection of Building Wall using R-CNN Technique (R-CNN 기법을 이용한 건물 벽 폐색영역 추출 적용 연구)

  • Kim, Hye Jin;Lee, Jeong Min;Bae, Kyoung Ho;Eo, Yang Dam
    • Journal of Cadastre & Land InformatiX
    • /
    • v.48 no.2
    • /
    • pp.213-225
    • /
    • 2018
  • For constructing three-dimensional (3D) spatial information occlusion region problem arises in the process of taking the texture of the building. In order to solve this problem, it is necessary to investigate the automation method to automatically recognize the occlusion region, issue it, and automatically complement the texture. In fact there are occasions when it is possible to generate a very large number of structures and occlusion, so alternatives to overcome are being considered. In this study, we attempt to apply an approach to automatically create an occlusion region based on learning by patterning the blocked region using the recently emerging deep learning algorithm. Experiment to see the performance automatic detection of people, banners, vehicles, and traffic lights that cause occlusion in building walls using two advanced algorithms of Convolutional Neural Network (CNN) technique, Faster Region-based Convolutional Neural Network (R-CNN) and Mask R-CNN. And the results of the automatic detection by learning the banners in the pre-learned model of the Mask R-CNN method were found to be excellent.

Measurements of Green Space Ratio in Google Earth using Convolutional Neural Network (합성곱 신경망을 이용한 구글 어스에서의 녹지 비율 측정)

  • Youn, Yeo-Su;Kim, Kwang-Baek;Park, Hyun-Jun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.3
    • /
    • pp.349-354
    • /
    • 2020
  • The preliminary investigation to expand the green space requires a lot of cost and time. In this paper, we solve the problem by measuring the ratio of green space in a specific region through a convolutional neural network based the green space classification using Google Earth images. First, the proposed method collects various region images in Google Earth and learns them by using the convolutional neural network. The proposed method divides the image recursively to measure the green space ratio of the specific region, and it determines whether the divided image is green space using a trained convolutional neural network model, and then the green space ratio is calculated using the regions determined as the green space. Experimental results show that the proposed method shows high performance in measuring green space ratios in various regions.

CNN Based Lithography Hotspot Detection

  • Shin, Moojoon;Lee, Jee-Hyong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.3
    • /
    • pp.208-215
    • /
    • 2016
  • The lithography hotspot detection process is crucial for semiconductor design development process. But, the lithography hotspot detection using optical simulation method takes much time and it slowdown the layout design development cycle. Though the geometry based approach is introduced as an alternative, it still revealed low detection performance and sophisticated framework. To solve this problem, we introduce a deep convolutional neural network based hotspot detection method. Our method made better results in ICCCAD 2012 dataset. To reach this score, we used lots of technical effort to improve the result in addition to just utilizing the nature of convolutional neural network. Inspection region reduction, data augmentation, DBSCAN clustering helped our work more stable and faster.

Sub-Frame Analysis-based Object Detection for Real-Time Video Surveillance

  • Jang, Bum-Suk;Lee, Sang-Hyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.11 no.4
    • /
    • pp.76-85
    • /
    • 2019
  • We introduce a vision-based object detection method for real-time video surveillance system in low-end edge computing environments. Recently, the accuracy of object detection has been improved due to the performance of approaches based on deep learning algorithm such as Region Convolutional Neural Network(R-CNN) which has two stage for inferencing. On the other hand, one stage detection algorithms such as single-shot detection (SSD) and you only look once (YOLO) have been developed at the expense of some accuracy and can be used for real-time systems. However, high-performance hardware such as General-Purpose computing on Graphics Processing Unit(GPGPU) is required to still achieve excellent object detection performance and speed. To address hardware requirement that is burdensome to low-end edge computing environments, We propose sub-frame analysis method for the object detection. In specific, We divide a whole image frame into smaller ones then inference them on Convolutional Neural Network (CNN) based image detection network, which is much faster than conventional network designed forfull frame image. We reduced its computationalrequirementsignificantly without losing throughput and object detection accuracy with the proposed method.

A New Bank-card Number Identification Algorithm Based on Convolutional Deep Learning Neural Network

  • Shi, Rui-Xia;Jeong, Dong-Gyu
    • International journal of advanced smart convergence
    • /
    • v.11 no.4
    • /
    • pp.47-56
    • /
    • 2022
  • Recently bank card number recognition plays an important role in improving payment efficiency. In this paper we propose a new bank-card number identification algorithm. The proposed algorithm consists of three modules which include edge detection, candidate region generation, and recognition. The module of 'edge detection' is used to obtain the possible digital region. The module of 'candidate region generation' has the role to expand the length of the digital region to obtain the candidate card number regions, i.e. to obtain the final bank card number location. And the module of 'recognition' has Convolutional deep learning Neural Network (CNN) to identify the final bank card numbers. Experimental results show that the identification rate of the proposed algorithm is 95% for the card numbers, which shows 20% better than that of conventional algorithm or method.