Proceedings of the Korean Society of Medical Physics Conference
/
2003.09a
/
pp.77-77
/
2003
CT와 MRI의 단면 영상을 대상으로 영상분할 (Image segmentation)과 Image registration방법을 이용하여 인체 모델을 개발 하고자 한다. 우선 인체의 Head와 Neck부분의 CT와 MR 영상을 얻어 뼈, 근육, 인대, 그리고 그 밖의 장기의 해부학적 영상 특징을 분석하였다. 인체의 Head와 Neck 부분에 대한 CT와 MR 영상에 대해 각 부위별로 ROI(region-of-interrest)를 설정하였고, 각 volxel 마다 3차원 좌표를 계산할 수 있는 소프트웨어를 개발하였다. 특히 각 해부학적 영상에서 부위별로 CT 번호를 분석하고, pulse sequence에 따른 MRI 영상의 부위별 특정을 분석하였다. 이 분석한 자료를 바탕으로 영상 분할을 하였다. 영상 분할전에 각종 잡음(noise) 제거 및 영상 분할을 효과적으로 처리하기 위해 기본적인 영상처리 (filtering)를 구현하였고, 대조도(contrast) 및 밝기(brightness)를 조절할 수 있게 프로그램을 구현하였다. 영상 분할 방법 중 선(line) 및 에지(edge) 의 검출 방법, 문턱치화(threshold) 방법, 영역확대(region growing) 방법으로 영상 분할을 해봄으로써 우리의 인체 모델링 개발에 가장 적합한 영상 분할 알고리듬 방법을 찾도록 시도하였다. 결과적으로 말하면, 한가지 방법의 알고리듬을 쓰는 것보다는 인체의 부위에 따라 두 가지 이상의 알고리듬 방법을 쓰는 것이 원하고자 하는 부위를 영상 분할하는데 더 효과적이다는 것을 알게 되었다. 우리의 연구 과제에서는 영역확대(region growing) 방법과 문턱치화 방법, 모드법(피크니스, 밸리)의 알고리듬을 이용하여 영상 분할을 한 결과 우리가 얻고자 하는 인체 부위별 중 근육과 뼈를 구별하는데는 별 무리가 없었으나, 인대 및 기타 장기를 구별하는데는 어려움을 겪게 되었다. 이후에 좀더 알고리듬을 연구하여 이번 연구에서 구별하기 어려운 장기 부분도 구별 할 수 있도록 노력하겠다.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.40
no.1
/
pp.51-62
/
2003
A new video segmentation algorithm for segmentation-based video coding is proposed. The method uses a new criterion based on similarities in both motion and brightness. Brightness and motion information are incorporated in a single segmentation procedure. The actual segmentation is accomplished using a region-growing technique based on the watershed algorithm. In addition, a tracking technique is used in subsequent frames to achieve a coherent segmentation through time. Simulation results show that the proposed method is effective in determining object boundaries not easily found using the statistic criterion alone.
In this paper, video image segmentation algorithm based on color histogram and change detector is proposed. Color histograms are calculated from both changed region which is detected in the previous and current frame and unchanged region. With each histogram, modes and valleys are detected. Then, color vectors are calculated by averaging pixels in modes. Markers are extracted by labeling color vectors that represent modes, the watershed algorithm is applied to determine uncertain region. In growing region, the root mean square(RMS) of the distance between average pixel in marker region and adjacent pixel is used as a measure. The proposed algorithm based on color histogram and change detector segments video image fastly and effectively. And simulation results show that the proposed method determines the exact boundary between background and foreground.
The Journal of Korean Institute of Communications and Information Sciences
/
v.22
no.3
/
pp.469-480
/
1997
For moving image coding, the variable size of region coding based on local motion is more efficient than fixed size of region coding. It can be applied well to complex motions and is more stable for wide motions because images are segmented according to local motions. In this paper, new image coding method using the segmentation of motion vectors is proposed. First, motion vector field is smoothed by filtering and segmented by smoothed motion vectors. The region growing method is used for decomposition of regions, and merging of regions is decided by motion vector and prediction errors of the region. Edge of regions is excluded because of the correlation of image, and neighbor motion vectors are used evaluation of current block and construction of region. The results of computer simulation show the proposed method is superior than the existing methods in aspect of coding efficiency.
As three-dimensional range scanners make large point clouds a more common initial representation of real world objects, a need arises for algorithms that can efficiently process point sets. In this paper, we present a method for extracting smooth surfaces from dense point clouds. Given an unorganized set of points in space as input, our algorithm first uses principal component analysis to estimate the surface variation at each point. After defining conditions for determining the geometric compatibility of a point and a surface, we examine the points in order of increasing surface variation to find points whose neighborhoods can be closely approximated by a single surface. These neighborhoods become seed regions for region growing. The region growing step clusters points that are geometrically compatible with the approximating surface and refines the surface as the region grows to obtain the best approximation of the largest number of points. When no more points can be added to a region, the algorithm stores the extracted surface. Our algorithm works quickly with little user interaction and requires a fraction of the memory needed for a standard mesh data structure. To demonstrate its usefulness, we show results on large point clouds acquired from real-world objects.
In this paper. we propose a semi-automatic segmentation algorithm to extract organ in 3D medical data by using a manually segmentation result in a sing1e slice. Generally region glowing based tracking method consists of 3 steps object projection. seed extraction and boundary decision by region growing. But because the boundary between organs in medical data is vague, improper seeds make the boundary dig into the organ or extend to the false region. In the proposed algorithm seeds are carefully extracted to find suitable boundaries between organs after region growing. And the jagged boundary at low gradient region after region growing is corrected by post-processing using Fourier descriptor. Also two-path tracking make it possible to catch up newly appeared areas. The proposed algorithm provides satisfactory results in segmenting 1 mm distance kidneys from X-rav CT body image set of 82 slices.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
1998.06b
/
pp.29-33
/
1998
In this paper, we propose a hierarchical segmentation method for tracking a semantic video object using a watershed algorithm based on morphological filtering. In the proposed method, each hierarchy consists of three steps: First, markers are extracted on the simplified current frame. Second, region growing by a modified watershed algorithm is performed for segmentation. Finally, the segmented regions are classified into 3 categories, i.e., inside, outside, and uncertain regions according to region probability values, which are acquired by the probability map calculated from a estimated motion field. Then, for the remaining uncertain regions, the above three steps are repeated at lower hierarchies with less simplified frames until every region is decided to a certain region. The proposed algorithm provides prospective results in video sequences such as Miss America, Clair, and Akiyo.
This paper has developed a system for early diagnosis of senile dementia and mild cognitive impairment (MCI) by developing software to measure the volume of hippocampus. This software consists of two parts; segmentation and analysis. The segmentation part uses ROI and region growing to segment hippocampus region. On the other hand, the analysis part creates a volume rendering of hippocampus. This software is expected contribute in these research fields for dementia diagnosis and its medication planning.
This study proposes an approach to unsupervisedly estimate the number of classes and the parameters of defining the classes in order to train the classifier. In the proposed method, the image is segmented using a spatial region growing based on hierarchical clustering, and fuzzy training is then employed to find the sample classes that well represent the ground truth. For cluster validation, this approach iteratively estimates the class-parameters in the fuzzy training for the sample classes and continuously computes the log-likelihood ratio of two consecutive class-numbers. The maximum ratio rule is applied to determine the optimal number of classes. The experimental results show that the new scheme proposed in this study could be used to select the regions with different characteristics existed on the scene of observed image as an alternative of field survey that is so expensive.
Proceedings of the Korean Information Science Society Conference
/
2006.10b
/
pp.526-530
/
2006
논문은 CT영상에서 영역 확장 기법을 이용하여 인간의 장기 중 뇌와 간을 자동으로 추출할 수 있는 방법을 제안한다. 이는 뇌와 간이 CT영상에서 비교적 넓은 영역을 차지하고 있다는 사실에 기인하였으며, CT영상에서 특정 장기 영역을 추출하기 위해서 크게 초기 탐색 영역 결정 단계와 최종 장기 영역 단계로 나누어진다. 초기 탐색 영역은 CT영상 내에서 추출하고자 하는 장기 영역과 관계없는 부분을 제거하고 특정 장기 영역만을 남겨 관심 장기 영역의 검출률을 높이는 작업이다. 본 논문에서는 CT영상에서 비교적 높은 Gray Level을 가지고 있는 뼈영역인 두개골과 척추의 위치를 기반으로 하여 초기 탐색 영역을 결정하는 방법을 사용하였다. 특정 장기 영역의 추출은 ATID(Automatic Threshold Intensity Decision)를 이용한 이진화 단계, 모폴로지의 Opening 기법을 이용한 잡음제거 단계, Region Growing 기법을 이용한 특정 영역 추출 단계를 이용하는 과정을 거친다. 본 논문에서는 Region Growing 기법을 거친 다음 각각의 그룹 중에서 크기가 가장 큰 부분을 최종 특정 장기 영역으로 결정하였다. 본 논문에서 제안한 알고리즘은 국립전남대학교 부속병원에서 수집된 각각 뇌영상 100장과 간영상 100장을 사용하여 실험하였고, 제안된 알고리즘을 통해 관심 장기 영역을 추출했을 경우 약 91%이상의 높은 추출률을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.