• Title/Summary/Keyword: Region Tracking

Search Result 541, Processing Time 0.021 seconds

Multiple Objection and Tracking based on Morphological Region Merging from Real-time Video Sequences (실시간 비디오 시퀀스로부터 형태학적 영역 병합에 기반 한 다중 객체 검출 및 추적)

  • Park Jong-Hyun;Baek Seung-Cheol;Toan Nguyen Dinh;Lee Guee-Sang
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.2
    • /
    • pp.40-50
    • /
    • 2007
  • In this paper, we propose an efficient method for detecting and tracking multiple moving objects based on morphological region merging from real-time video sequences. The proposed approach consists of adaptive threshold extraction, morphological region merging and detecting and tracking of objects. Firstly, input frame is separated into moving regions and static regions using the difference of images between two consecutive frames. Secondly, objects are segmented with a reference background image and adaptive threshold values, then, the segmentation result is refined by morphological region merge algorithm. Lastly, each object segmented in a previous step is assigned a consistent identification over time, based on its spatio-temporal information. The experimental results show that a proposed method is efficient and useful in terms of real-time multiple objects detecting and tracking.

Multi-level Cross-attention Siamese Network For Visual Object Tracking

  • Zhang, Jianwei;Wang, Jingchao;Zhang, Huanlong;Miao, Mengen;Cai, Zengyu;Chen, Fuguo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.12
    • /
    • pp.3976-3990
    • /
    • 2022
  • Currently, cross-attention is widely used in Siamese trackers to replace traditional correlation operations for feature fusion between template and search region. The former can establish a similar relationship between the target and the search region better than the latter for robust visual object tracking. But existing trackers using cross-attention only focus on rich semantic information of high-level features, while ignoring the appearance information contained in low-level features, which makes trackers vulnerable to interference from similar objects. In this paper, we propose a Multi-level Cross-attention Siamese network(MCSiam) to aggregate the semantic information and appearance information at the same time. Specifically, a multi-level cross-attention module is designed to fuse the multi-layer features extracted from the backbone, which integrate different levels of the template and search region features, so that the rich appearance information and semantic information can be used to carry out the tracking task simultaneously. In addition, before cross-attention, a target-aware module is introduced to enhance the target feature and alleviate interference, which makes the multi-level cross-attention module more efficient to fuse the information of the target and the search region. We test the MCSiam on four tracking benchmarks and the result show that the proposed tracker achieves comparable performance to the state-of-the-art trackers.

Design and Implementation of a Stage Object Location Tracking Method using Texture Feature and CAMShift Algorithm (질감 특징과 CAMShift 알고리즘을 이용한 무대 피사체 위치 추적 기법 설계 및 구현)

  • Shin, Jung-Ah;Kim, Do-Hee;Hong, Seok-Keun;Cho, Dae-Soo
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.8
    • /
    • pp.876-887
    • /
    • 2018
  • In this paper, we propose an robust CAMShift method to track stage objects with a camera. In order to solve the problem of tracking object misdetection in existing CAMShift technique, MBR region is detected to separate the background and the subject, and the subject size of the region of interest is calculated to solve the problem of erroneously detecting a large region having a similar color distribution ratio. Also, by applying the color corelogram and MB-LBP to the part that can not be solved by the color ratio and the size limitation, accurate texture tracking is enabled by reflecting the texture characteristics. Experimental results show that the proposed method has good tracking performance for objects that do not deviate from the size of the subject set in the area of interest and accurately extracts the texture characteristics of different subjects with similar color distribution ratios.

A Shadow Region Suppression Method using Intensity Projection and Converting Energy to Improve the Performance of Probabilistic Background Subtraction (확률기반 배경제거 기법의 향상을 위한 밝기 사영 및 변환에너지 기반 그림자 영역 제거 방법)

  • Hwang, Soon-Min;Kang, Dong-Joong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.1
    • /
    • pp.69-76
    • /
    • 2010
  • The segmentation of moving object in video sequence is a core technique of intelligent image processing system such as video surveillance, traffic monitoring and human tracking. A typical method to segment a moving region from the background is the background subtraction. The steps of background subtraction involve calculating a reference image, subtracting new frame from reference image and then thresholding the subtracted result. One of famous background modeling is Gaussian mixture model (GMM). Even though the method is known efficient and exact, GMM suffers from a problem that includes false pixels in ROI (region of interest), specifically shadow pixels. These false pixels cause fail of the post-processing tasks such as tracking and object recognition. This paper presents a method for removing false pixels included in ROT. First, we subdivide a ROI by using shape characteristics of detected objects. Then, a method is proposed to classify pixels from using histogram characteristic and comparing difference of energy that converts the color value of pixel into grayscale value, in order to estimate whether the pixels belong to moving object area or shadow area. The method is applied to real video sequence and the performance is verified.

A Combined Pseudo-random Noise Signal Based Advanced Region Correlation Scheme for BOC(pn,n) Modulated GNSS Signals in Repeat-back Jamming Environment (재방송 재밍 환경에서 BOC(pn,n) GNSS 변조된 신호를 위한 CP-ARC 기법)

  • Yoo, Seungsoo;Yeom, Dong-Jin;Jee, Gyu-In;Kim, Sun Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.11
    • /
    • pp.977-983
    • /
    • 2016
  • This paper proposes a novel code-tracking scheme to track the fine code synchronization for BOC (pn,n)-modulated global navigation satellite system signals in a repeat-back jamming environment. The correlation function of BOC (pn,n)-modulated signals has several peaks. The correlation function in the advanced offset region remains almost unchanged due to the repeat-back signals being received later than a line-of-sight signal in the same multipath signal receiving case. Additionally, the combined pseudo-random noise signal can be treated as repeat-back jamming signals, like multipath signals. In this paper, we propose a novel code-tracking scheme utilizing the advantages of using a combined pseudo-random noise signal in the advanced offset region and verify its performance through simulation.

MEASUREMENT OF TURBULENCE CHARACTERISTICS BY USING PARTICLE TRACKING VELOCIMETRY

  • Yoon, Byung-man;Yu, Kwon-kyu;Marian Muste
    • Water Engineering Research
    • /
    • v.3 no.2
    • /
    • pp.135-142
    • /
    • 2002
  • This study investigates the effects of sediment on the flow characteristics such as velocity distribution, friction velocity, turbulent intensities, Reynolds stress, etc. Particle tracking velocimetry (PTY) is used to measure the vertical flow field. Results show that flow over the high bed-load concentration region has larger values of mean velocity and friction velocity and smaller values of turbulence intensities, compared to those for flow over the low bed-load concentration region.

  • PDF

Foreground segmentation and tracking from sequential stereo images for 3D object modeling (3차원 물체 모델링을 위한 연속된 스테레오 이미지 상에서의 전경 영역 분리 및 추적)

  • Han, In-Kyu;Kim, Hyoung-Nyoun;Kim, Kyung-Koo;Park, Ji-Hyung
    • Journal of the HCI Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.9-16
    • /
    • 2011
  • The previous researches of 3D object modeling have been performed in a limited environment where a target object only exists. However, in order to model an object in the real environment, we need to consider a dynamic environment, which has various objects and a frequently changing background. Therefore, this paper presents a segmentation and tracking method for a foreground which includes a target object in the dynamic environment. By using depth information than color information, the foreground region can be segmented and tracked more robustly. In addition, the foreground region can be tracked on the sequential images by referring depth distributions of the foreground region because both the position and the status in the consecutive images of the foreground region are almost unchanged. Experimental results show that our proposed method can robustly segment and track the foreground region in various conditions of the real environment. Moreover, as an application of the proposed method, it is presented a method for modeling an object extracting the object regions from the foreground region that is segmented and tracked.

  • PDF

Moving Object Tracking Method in Video Data Using Color Segmentation (칼라 분할 방식을 이용한 비디오 영상에서의 움직이는 물체의 검출과 추적)

  • 이재호;조수현;김회율
    • Proceedings of the IEEK Conference
    • /
    • 2001.06d
    • /
    • pp.219-222
    • /
    • 2001
  • Moving objects in video data are main elements for video analysis and retrieval. In this paper, we propose a new algorithm for tracking and segmenting moving objects in color image sequences that include complex camera motion such as zoom, pan and rotating. The Proposed algorithm is based on the Mean-shift color segmentation and stochastic region matching method. For segmenting moving objects, each sequence is divided into a set of similar color regions using Mean-shift color segmentation algorithm. Each segmented region is matched to the corresponding region in the subsequent frame. The motion vector of each matched region is then estimated and these motion vectors are summed to estimate global motion. Once motion vectors are estimated for all frame of video sequences, independently moving regions can be segmented by comparing their trajectories with that of global motion. Finally, segmented regions are merged into the independently moving object by comparing the similarities of trajectories, positions and emerging period. The experimental results show that the proposed algorithm is capable of segmenting independently moving objects in the video sequences including complex camera motion.

  • PDF

Real-Time Rotation-Invariant Face Detection Using Combined Depth Estimation and Ellipse Fitting

  • Kim, Daehee;Lee, Seungwon;Kim, Dongmin
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.1 no.2
    • /
    • pp.73-77
    • /
    • 2012
  • This paper reports a combined depth- and model-based face detection and tracking approach. The proposed algorithm consists of four functional modules; i) color-based candidate region extraction, ii) generation of the depth histogram for handling occlusion, iii) rotation-invariant face region detection using ellipse fitting, and iv) face tracking based on motion prediction. This technique solved the occlusion problem under complicated environment by detecting the face candidate region based on the depth-based histogram and skin colors. The angle of rotation was estimated by the ellipse fitting method in the detected candidate regions. The face region was finally determined by inversely rotating the candidate regions by the estimated angle using Haar-like features that were robustly trained robustly by the frontal face.

  • PDF

An Automatic Camera Tracking System for Video Surveillance

  • Lee, Sang-Hwa;Sharma, Siddharth;Lin, Sang-Lin;Park, Jong-Il
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2010.07a
    • /
    • pp.42-45
    • /
    • 2010
  • This paper proposes an intelligent video surveillance system for human object tracking. The proposed system integrates the object extraction, human object recognition, face detection, and camera control. First, the object in the video signals is extracted using the background subtraction. Then, the object region is examined whether it is human or not. For this recognition, the region-based shape descriptor, angular radial transform (ART) in MPEG-7, is used to learn and train the shapes of human bodies. When it is decided that the object is human or something to be investigated, the face region is detected. Finally, the face or object region is tracked in the video, and the pan/tilt/zoom (PTZ) controllable camera tracks the moving object with the motion information of the object. This paper performs the simulation with the real CCTV cameras and their communication protocol. According to the experiments, the proposed system is able to track the moving object(human) automatically not only in the image domain but also in the real 3-D space. The proposed system reduces the human supervisors and improves the surveillance efficiency with the computer vision techniques.

  • PDF