• Title/Summary/Keyword: Region Separation

Search Result 558, Processing Time 0.03 seconds

A Study on Flow Characteristics of the Entrance Region of Wavy Channel by PIV (PIV를 이용한 파형채널 입구영역의 유동특성에 관한 연구)

  • Lee, Cheol-Jae;Cho, Dae-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.912-917
    • /
    • 2009
  • An experimental flow visualization study of the entrance section of channels formed with wavy plates was made. The experiments were conducted in a water channel and a laser illuminated particle tracking was used as the technique of flow visualization. The flow region that were found in the experiments are steady, unsteady and significantly-mixed flows. Instabilities of the flow first appear near the exit of the channel. As the Reynolds number increases, the flows are characterized by the appearance of flow separation and the growth of recirculation region.

Analysis of Field-Aligned Currents in the High-Altitude Nightside Auroral Region: Cluster Observation

  • Shin, Youra;Lee, Ensang;Lee, Jae-Jin
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.1
    • /
    • pp.1-9
    • /
    • 2019
  • In this paper we present analysis of current density when the Cluster spacecraft pass the nightside auroral region at about $4-5R_E$ from the center of Earth. The analysis is made when the inter-spacecraft separation is within 200 km, which allows all four spacecraft to be situated inside the same current sheet. On 22 February 2002, two field-aligned current (FAC) events were observed in both the southern and the northern hemispheres. The FACs were calculated with magnetic field data obtained by the four spacecraft using the Curlometer method. The scales of the FACs along the spacecraft trajectory and the magnitudes were hundreds of kilometers and tens of $nA/m^2$, respectively, and both events were mapped to the auroral region in the ionosphere. We also examined reliability of the results with some parameters, and found that our results are adequately comparable with other studies. Nevertheless, some limitations that decrease the accuracy of current estimation exist.

Effects of Rotational Speed on the Performance in a Transonic Axial Compressor with a Dihedral Stator (회전속도가 상반각 정익을 적용한 천음속 축류 압축기 성능에 미치는 영향)

  • Hwang, Dongha;Choi, Minsuk;Baek, Jehyun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.5
    • /
    • pp.27-36
    • /
    • 2014
  • This paper presents a numerical investigation of the effect of the rotation speed on the performance in a transonic axial compressor with the dihedral stator. Four stator geometries with different stacking line variables were tested in the flow simulations over the whole operating range. It was found that a large shroud loss at the rotor outlet and the subsequent shroud corner separation in the stator passage occurred at low mass flow rate with the 100 % design speed. The hub dihedral stator could suppress the shroud loss region and consequently improve the stall margin. In case of the 70 % design speed condition as the mass flow rate decreased, it was seen that the high loss region was placed at the midspan of the rotor passage. The dihedral stator slightly affected the local diffusion factor, but the performance of the compressor was not changed.

Three-Dimensional Flow Analysis around Rolling Stock with Square Cross Section Using Low Re ${\kappa}-{\epsilon}$ (사각 단면을 갖는 철도차량 주위의 3차원 유동해석)

  • Jang, Yong-Jun
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.6 s.37
    • /
    • pp.772-777
    • /
    • 2006
  • Three-dimensional numerical study is performed for the flow analysis around the rolling stock with square cross section (Mugungwha train model). The height (H) of rolling stock is considered as the characteristic length and the total length of rolling stock is 40 which correspond to 1/2 unit of rolling stock. The gap between the surface and rolling stock is 0.17H which is average value. The relative velocity between the surface and rolling stock is assumed to be zero and Re=10,000 based on the characteristic length. Low Re ${\kappa}-{\epsilon}$[15] is employed for the calculation of turbulence which resolve all the way to the solid surface (laminar sub-layer). Large flow separation occurred at the front head of train and a pair of vortex is generated on both top and side of rolling stock. The behavior of vortices on the top of the rolling stock is believed to affect the performance of the pantograph which should be intensively investigated. The difference between the high pressure in the front stagnation region of train and the low pressure in the rear separated region causes a large pressure drag. A large pair or vortex are generated in the rear of train and the size of vortex is increased more than the size of cross section of train.

Numerical Visualization of the Pseudo-Shock Waves using LES (LES를 이용한 Pseudo-Shock Waves의 가시화)

  • Deng, Ruoyu;Jin, Yingzi;Kim, Heuy Dong
    • Journal of the Korean Society of Visualization
    • /
    • v.13 no.3
    • /
    • pp.29-34
    • /
    • 2015
  • The interaction between a normal shock wave and a boundary layer along a wall surface in internal compressible flows causes a very complicated flow. This interaction region containing shock train and mixing region is called as pseudo-shock waves. Pseudo-shock waves in the divergent part of a rectangular nozzle have been investigated by using large-eddy simulation (LES). LES studies have been done for the complex flow phenomena of three-dimensional pseudo-shock waves. The LES results have been validated against experimental wall-pressure measurements. The LES results are in good agreement with experimental results. Pseudo-shock length and corner separation have been studied in three-dimensional LES model. Comparison of centerline pressure measurement and 3D visualization measurement has been discussed for the corner separation position. It has been concluded that the pseudo-shock length should be measured by using 3D visualization measurement.

Hybrid Sensor-less Control of Permanent Magnet Synchronous Motor in Low-speed Region

  • Yamamoto, Yasuhiro;Funato, Hirohito;Ogasawara, Satoshi
    • Journal of Power Electronics
    • /
    • v.8 no.4
    • /
    • pp.301-308
    • /
    • 2008
  • This paper proposes a method of improving the stability in sensor-less control of permanent magnet synchronous motors. The control method for low-speed region is divided into two: One is a high frequency method, which involves a problem of reverse rotation once misdetection of the permanent magnet polarity should occur, and another one is a current drive method, which has a problem that phase and speed oscillations are caused by quick speed changes. Hence, authors propose adoption of the current drive method for the basic control system with added compensation of stabilization by means of the high frequency method. This combination secures stable control with no risk of reversal and less vibration. In addition, authors have also considered a frequency separation filter of a shorter delay time so that current control performance will not lower even when high frequencies are introduced. This filter has achieved simplified compensation using repetitive characteristic through the utilization of the periodicity of high frequency current. Simulation and experiment have been conducted to verify that the stable performance of this system is improved.

Nonlinear Characteristics of Flow Separation Induced Vibration at Low-Speed Using Coupled CSD and CFD technique (전산구조진동/전산유체 기법을 연계한 저속 유동박리 유발 비선형 진동특성 연구)

  • Kim, Dong-Hyun;Chang, Tae-Jin;Kwon, Hyuk-Jun;Lee, In
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.140-146
    • /
    • 2002
  • The fluid induced vibration (FIV) phenomena of a 2-D.O.F airfoil system have been investigated in low Reynolds number incompressible flow region. Unsteady flows with viscosity are computed using two-dimensional incompressible Navier-stokes code. To validate developed Navier-Stokes code, steady and unsteady flow fields around airfoil are analyzed. The present fluid/structure interaction analysis is based on the most accurate computational approach with computational fluid dynamics (CSD) and computational structural dynamics (CSD) techniques. The highly nonlinear fluid/structure interaction phenomena due to severe flow separations have been analyzed fur the low Reynolds region (R$_{N}$ =500~5000) that has a dominancy of flow viscosity. The effect of R$_{N}$ on the fluid/structure coupled vibration instability of 2-DOF airfoil system is presented and the effect of initial angle of attack on the dynamic instability are also shown.own.

  • PDF

Thermal design of reflow oven with PCB-module (이송 모듈을 사용한 리플로우 오븐의 열유동해석)

  • Jeong, Won-Jung;Kwon, Hyun-Goo;Cho, Hyung-Hee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.5 no.3 s.16
    • /
    • pp.29-32
    • /
    • 2006
  • Because of new requirements related to the employment of SMT(Surface Mounting Technology) manufacturing and the diversity of components on high density PCB(Printed Circuit Boards), Thermal control of the reflow process is required in order to achieve acceptable yields and reliability of SMT assemblies. Accurate control of the temperature distribution during the reflow process is one of the major requirements, especially in lead-free assembly. This study has been performed for reflow process using the commercial CFD(Computational Fluid Dynamics) tool for predicting flow and temperature distributions. Porous plate was installed to prevent leakage flow which was one of the major problem of temperature uniformity in the reflow process. There is a separation region where the flow is turned. Outside wall made of porous plate is to prevent and minimize separation region for acquiring uniform temperature during operation. This paper provided design concept from CFD results of the steady state temperature distribution and flow field inside a reflow oven.

  • PDF

Six Color Separation Using Additional Colorants and Quantitative Granularity Metric for Photography Quality (고화질 색 재현을 위한 추가적인 잉크와 정량적인 낟알 무의 측정자를 이용한 6색 분리)

  • Son Chang-Hwan;Cho Yang-Ho;Kwon Oh-Seol;Ha Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.4 s.304
    • /
    • pp.49-59
    • /
    • 2005
  • This paper proposed a six-color separation using additional colorants and quantitative granularity metric to reduce color difference and graininess. In the conventional method, light magenta and light cyan are used in the bright region instead of magenta and cyan. However, the hue value of liBht magenta and light cyan is different from the one of magenta and cyan in CIELAB space, so that this makes the colorimetric reproduction more or less inaccurate. To improve this inaccuracy, the proposed method uses yellow and light magenta colorants as the additional colorants. In the bright region, magenta is replaced with light magenta and yellow, while cyan is replaced with light cyan and light magenta. This selection reduces hue difference because it creates the color of similar hue to magenta and cyan. In addition, smooth image can be simultaneously obtained by the less dot visibility of additional colorants. In the middle region, magenta is replaced with light magenta and magenta, while cyan is replaced with light cyan and cyan. The use of two colorants having a different concentration makes the dot Pattern coarse. To reflect this Phenomenon, quantitative granularity metric is used. In the dark region, only magenta and cyan colorant is used as usual. Through experiments, it is shown that the proposed method improves both colorimetric and smooth tone reproductions.

Interactions between pre-existing large pipelines and a new tunnel (기존 대구경 파이프라인과 신설터널간의 상호작용)

  • Jeong, Sun-Ah;Choi, Jung-In;Hong, Eun-Soo;Chun, Youn-Chul;Lee, Seok-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.2
    • /
    • pp.175-188
    • /
    • 2009
  • When a new tunnel is excavated by the drill and blast method near pre-existing underground structures or tunnels due to the region restricted condition such as urban area, the ground will be relaxed by the excavation. In this case, issues can be created in terms of stability of pre-existing underground structures. One of major factors determining the stability of pre-existing underground structures can be a separation distance between pre-existing underground structures and a newly excavated tunnel. The region of ground relaxation defined by the plastic zone due to new excavation can be varied by separation distance. In this study, in other to estimate an influence of new tunnel excavation in terms of separation distance on the stability of pre-existing large pipelines, two-dimensional scaled model tests using plaster were performed for six models which have a different separation distance, The results show that based on the analysis of induced displacement during tunnel construction, the displacement decreases as the separation distance between large pipeline and new tunnel is increased until the distance is 2.5 times of pipeline diameter. Beyond this point, however, the displacement has become stabilized.