• Title/Summary/Keyword: Region Extraction

Search Result 1,020, Processing Time 0.03 seconds

A Study of Image Enhancement Processing for Letter Extraction of Image Using Terahertz Signal (테라헤르츠 신호를 이용한 영상의 글자 추출을 위한 화질 개선처리에 대한 연구)

  • Kim, Seongyoon;Choi, Hyunkeun;Park, Inho;Kim, Youngseop;Lee, Yonghwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.3
    • /
    • pp.111-115
    • /
    • 2017
  • Terahertz waves are superior to conventional X-ray or Magnetic Resonance Tomography(MRI), and the amount of information that can be transmitted is as large as thousands of times that conventional X-ray or MRI. In addition, Terahertz waves have great performance in analyzing an object which have some layered structure. By using this advantage, we can extract the letters of a page by analyzing information such as absorption amount and reflection amount by irradiating a closed book with pulses of various frequencies within gap of a terahertz wave. However, in the image of each page using the Terahertz wave might be obtained various kinds of noise and the different character occlusion region. So, to extract letters from the terahertz image, we must take the noise and occlusion region away. We have been working to enhancement the image quality in various ways, and keep on studying de-noising processing for enhancement about the image quality and high resolution. Finally, we also keep on studying about OCR(Optical Character Recognition) technology, which based on pattern matching technique, to read letters.

  • PDF

An End-to-End Sequence Learning Approach for Text Extraction and Recognition from Scene Image

  • Lalitha, G.;Lavanya, B.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.7
    • /
    • pp.220-228
    • /
    • 2022
  • Image always carry useful information, detecting a text from scene images is imperative. The proposed work's purpose is to recognize scene text image, example boarding image kept on highways. Scene text detection on highways boarding's plays a vital role in road safety measures. At initial stage applying preprocessing techniques to the image is to sharpen and improve the features exist in the image. Likely, morphological operator were applied on images to remove the close gaps exists between objects. Here we proposed a two phase algorithm for extracting and recognizing text from scene images. In phase I text from scenery image is extracted by applying various image preprocessing techniques like blurring, erosion, tophat followed by applying thresholding, morphological gradient and by fixing kernel sizes, then canny edge detector is applied to detect the text contained in the scene images. In phase II text from scenery image recognized using MSER (Maximally Stable Extremal Region) and OCR; Proposed work aimed to detect the text contained in the scenery images from popular dataset repositories SVT, ICDAR 2003, MSRA-TD 500; these images were captured at various illumination and angles. Proposed algorithm produces higher accuracy in minimal execution time compared with state-of-the-art methodologies.

MLSE-Net: Multi-level Semantic Enriched Network for Medical Image Segmentation

  • Di Gai;Heng Luo;Jing He;Pengxiang Su;Zheng Huang;Song Zhang;Zhijun Tu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.9
    • /
    • pp.2458-2482
    • /
    • 2023
  • Medical image segmentation techniques based on convolution neural networks indulge in feature extraction triggering redundancy of parameters and unsatisfactory target localization, which outcomes in less accurate segmentation results to assist doctors in diagnosis. In this paper, we propose a multi-level semantic-rich encoding-decoding network, which consists of a Pooling-Conv-Former (PCFormer) module and a Cbam-Dilated-Transformer (CDT) module. In the PCFormer module, it is used to tackle the issue of parameter explosion in the conservative transformer and to compensate for the feature loss in the down-sampling process. In the CDT module, the Cbam attention module is adopted to highlight the feature regions by blending the intersection of attention mechanisms implicitly, and the Dilated convolution-Concat (DCC) module is designed as a parallel concatenation of multiple atrous convolution blocks to display the expanded perceptual field explicitly. In addition, MultiHead Attention-DwConv-Transformer (MDTransformer) module is utilized to evidently distinguish the target region from the background region. Extensive experiments on medical image segmentation from Glas, SIIM-ACR, ISIC and LGG demonstrated that our proposed network outperforms existing advanced methods in terms of both objective evaluation and subjective visual performance.

A Fast Iris Region Finding Algorithm for Iris Recognition (홍채 인식을 위한 고속 홍채 영역 추출 방법)

  • 송선아;김백섭;송성호
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.9
    • /
    • pp.876-884
    • /
    • 2003
  • It is essential to identify both the pupil and iris boundaries for iris recognition. The circular edge detector proposed by Daugman is the most common and powerful method for the iris region extraction. The method is accurate but requires lots of computational time since it is based on the exhaustive search. Some heuristic methods have been proposed to reduce the computational time, but they are not as accurate as that of Daugman. In this paper, we propose a pupil and iris boundary finding algorithm which is faster than and as accurate as that of Daugman. The proposed algorithm searches the boundaries using the Daugman's circular edge detector, but reduces the search region using the problem domain knowledge. In order to find the pupil boundary, the search region is restricted in the maximum and minimum bounding circles in which the pupil resides. The bounding circles are obtained from the binarized pupil image. Two iris boundary points are obtained from the horizontal line passing through the center of the pupil region obtained above. These initial boundary points, together with the pupil point comprise two bounding circles. The iris boundary is searched in this bounding circles. Experiments show that the proposed algorithm is faster than that of Daugman and more accurate than the conventional heuristic methods.

3D Medical Image Segmentation Using Region-Growing Based Tracking (영역 확장 기반 추적을 이용한 3차원 의료 영상 분할 기법)

  • Ko S.;Yi J.;Lim J.;Ra J. B.
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.3 s.61
    • /
    • pp.239-246
    • /
    • 2000
  • In this paper. we propose a semi-automatic segmentation algorithm to extract organ in 3D medical data by using a manually segmentation result in a sing1e slice. Generally region glowing based tracking method consists of 3 steps object projection. seed extraction and boundary decision by region growing. But because the boundary between organs in medical data is vague, improper seeds make the boundary dig into the organ or extend to the false region. In the proposed algorithm seeds are carefully extracted to find suitable boundaries between organs after region growing. And the jagged boundary at low gradient region after region growing is corrected by post-processing using Fourier descriptor. Also two-path tracking make it possible to catch up newly appeared areas. The proposed algorithm provides satisfactory results in segmenting 1 mm distance kidneys from X-rav CT body image set of 82 slices.

  • PDF

The Robust Skin Color Correction Method in Distorted Saturation by the Lighting (조명에 의한 채도 왜곡에 강건한 피부 색상 보정 방법)

  • Hwang, Dae-Dong;Lee, Keunsoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.2
    • /
    • pp.1414-1419
    • /
    • 2015
  • A method for detecting a skin region on the image is generally used to detect the color information. However, If saturation lowered, skin detection is difficult because hue information of the pixels is lost. So in this paper, we propose a method of correcting color of lower saturation of skin region images by the lighting. Color correction process of this method is saturation image acquisition and low-saturation region classification, segmentation, and the saturation of the split in the low saturation region extraction and color values, the color correction sequence. This method extracts the low saturation regions in the image and extract the color and saturation in the region and the surrounding region to produce a color similar to the original color. Therefore, the method of extracting the low saturation region should be correctly preceding. Because more accurate segmentation in the process of obtaining a low saturation regions, we use a multi-threshold method proposed Otsu in Hue values of the HSV color space, and create a binary image. Our experimental results for 170 portrait images show a possibility that the proposed method could be used efficiently preprocessing of skin color detection method, because the detection result of proposed method is 5.8% higher than not used it.

Window Production Method based on Low-Frequency Detection for Automatic Object Extraction of GrabCut (GrabCut의 자동 객체 추출을 위한 저주파 영역 탐지 기반의 윈도우 생성 기법)

  • Yoo, Tae-Hoon;Lee, Gang-Seong;Lee, Sang-Hun
    • Journal of Digital Convergence
    • /
    • v.10 no.8
    • /
    • pp.211-217
    • /
    • 2012
  • Conventional GrabCut algorithm is semi-automatic algorithm that user must be set rectangle window surrounds the object. This paper studied automatic object detection to solve these problem by detecting salient region based on Human Visual System. Saliency map is computed using Lab color space which is based on color opposing theory of 'red-green' and 'blue-yellow'. Then Saliency Points are computed from the boundaries of Low-Frequency region that are extracted from Saliency Map. Finally, Rectangle windows are obtained from coordinate value of Saliency Points and these windows are used in GrabCut algorithm to extract objects. Through various experiments, the proposed algorithm computing rectangle windows of salient region and extracting objects has been proved.

Marker extraction for morphological image segmentation using marker incubator (형태론적 영상 분할을 위한 마커 배양기를 이용한 마커의 추출)

  • Park, Hyun-Sang;Ra Jong-Beom
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.11
    • /
    • pp.106-115
    • /
    • 1998
  • The performance of morphological image segmentation heavily depends on a proper selection of markers. In this paper, we propose a marker incubator where only a catchment basin that has grown sufficiently large through flooding simulation is registered as a marker. Marker incubator does following things at each flooding level; growing defined marker regions, finding new marker regions, and postponing irrelevant regions to be examined at the next level. The examination for a region to be a valid marker is performed by two size-oriented criterions that are derived from the structuring element size of a morphological filter. The simulation result shows that the image segmentation with the proposed marker incubator achieves the comparable image quality to Wang's method in a less number of markers even without region merging. Additionally, since the proposed method also performs better in terms of image quality and information for transmission, it is well suited for region-based image coding.

  • PDF

Identification and Quantitative Determination of Glucosinolates in Brassica napus cv. Hanakkori

  • Kim, Sun-Ju;Fujii, Kouei;Mohamed, Zaidul Islam Sarker;Kim, Hyun-Woong;Yamauchi, Hiroaki;Ishii, Gensho
    • Food Science and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.1097-1101
    • /
    • 2008
  • The objective of this study was to identify and quantify glucosinolates (GSLs) in Brassica napus cv. Hanakkori and its parents and to evaluate its potential bitter taste. 'Hanakkori' materials were cultivated with commercial chemical nutrients (20 kg/ha, N-P-K: 16-10-10) at the field. GSLs were isolated by means of extraction with 70%(v/v) boiling methanol (MeOH) followed by desulfation from those plants by reversed-phase high performance liquid chromatography (HPLC) and identified by electronic spray ionization-mass spectrometry (ESI-MS) analysis. In 'Hanakkori', 11 GSLs were identified as progoitrin, glucoraphanin, glucoalyssin, gluconapoleiferin, gluconapin, 1-methylpropyl, glucobrassicanapin, glucobrassicin, 4-methoxyglucobrassicin, gluconasturtiin, and neoglucobrassicin. The total GSL contents were 109 and 36.1 mmol/kg dry weights (d.w.) for the seeds and edible parts, respectively. The major GSLs (>5 mmol/kg d.w.) in the seeds were progoitrin (78.8), gluconapin (10.7), and glucobrassicanapin (7.81), whereas they in the edible parts were progoitrin (16.1) and glucobrassicanapin (8.58). In addition, the bitter taste in the edible parts was presumably related with the presence of progoitrin (>45% to the total GSL).

Analysis and parameter extraction of motion blurred image (움직임 열화 현상이 발생한 영상의 분석과 파라메터 추출)

  • 최지웅;최병철;강문기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.10B
    • /
    • pp.1953-1962
    • /
    • 1999
  • While acquiring the image, the shaking of the image capturing equipment or the object seriously damages the image quality. This phenomenon, which degrades the clarity and the resolution of the image is called motion blur. In this paper, a newly defined function is introduced for finding the degree and the length of the motion blur. The domain of this function defined as Peak-trace domain. In The Peak-trace domain, the noise dominant region for calculating the noise variance and the signal dominant region for extracting the degree and the length of the motion blur are defined and analyzed. Using the information of the Peak-trace in the signal dominant region, we can find the direction of the motion regardless of the noise corruption. Weighted least mean square method helps extracting the Peak-trace more precisely. After getting the direction of the motion blur, we can find the length of the motion blur based on one dimensional Cepstrum. In the experiment, we could efficiently restore the degraded image using the information obtained by the proposed algorithm.

  • PDF