• Title/Summary/Keyword: Region Extraction

Search Result 1,020, Processing Time 0.024 seconds

Robust Extraction of Facial Features under Illumination Variations (조명 변화에 견고한 얼굴 특징 추출)

  • Jung Sung-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.6 s.38
    • /
    • pp.1-8
    • /
    • 2005
  • Facial analysis is used in many applications like face recognition systems, human-computer interface through head movements or facial expressions, model based coding, or virtual reality. In all these applications a very precise extraction of facial feature points are necessary. In this paper we presents a method for automatic extraction of the facial features Points such as mouth corners, eye corners, eyebrow corners. First, face region is detected by AdaBoost-based object detection algorithm. Then a combination of three kinds of feature energy for facial features are computed; valley energy, intensity energy and edge energy. After feature area are detected by searching horizontal rectangles which has high feature energy. Finally, a corner detection algorithm is applied on the end region of each feature area. Because we integrate three feature energy and the suggested estimation method for valley energy and intensity energy are adaptive to the illumination change, the proposed feature extraction method is robust under various conditions.

  • PDF

A Study on Face Component Extraction for Automatic Generation of Personal Avatar (개인아바타 자동 생성을 위한 얼굴 구성요소의 추출에 관한 연구)

  • Choi Jae Young;Hwang Seung Ho;Yang Young Kyu;Whangbo Taeg Ken
    • Journal of Internet Computing and Services
    • /
    • v.6 no.4
    • /
    • pp.93-102
    • /
    • 2005
  • In Recent times, Netizens have frequently use virtual character 'Avatar' schemes in order to present their own identity, there is a strong need for avatars to resemble the user. This paper proposes an extraction technique for facial region and features that are used in generating the avatar automatically. For extraction of facial feature component, the method uses ACM and edge information. Also, in the extraction process of facial region, the proposed method reduces the effect of lights and poor image quality on low resolution pictures. this is achieved by using the variation of facial area size which is employed for external energy of ACM. Our experiments show that the success rate of extracting facial regions is $92{\%}$ and accuracy rate of extracting facial feature components is $83.4{\%}$, our results provide good evidence that the suggested method can extract the facial regions and features accurately, moreover this technique can be used in the process of handling features according to the pattern parts of automatic avatar generation system in the near future.

  • PDF

Automatic Sputum Color Image Segmentation for Lung Cancer Diagnosis

  • Taher, Fatma;Werghi, Naoufel;Al-Ahmad, Hussain
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.1
    • /
    • pp.68-80
    • /
    • 2013
  • Lung cancer is considered to be the leading cause of cancer death worldwide. A technique commonly used consists of analyzing sputum images for detecting lung cancer cells. However, the analysis of sputum is time consuming and requires highly trained personnel to avoid errors. The manual screening of sputum samples has to be improved by using image processing techniques. In this paper we present a Computer Aided Diagnosis (CAD) system for early detection and diagnosis of lung cancer based on the analysis of the sputum color image with the aim to attain a high accuracy rate and to reduce the time consumed to analyze such sputum samples. In order to form general diagnostic rules, we present a framework for segmentation and extraction of sputum cells in sputum images using respectively, a Bayesian classification method followed by region detection and feature extraction techniques to determine the shape of the nuclei inside the sputum cells. The final results will be used for a (CAD) system for early detection of lung cancer. We analyzed the performance of a Bayesian classification with respect to the color space representation and quantification. Our methods were validated via a series of experimentation conducted with a data set of 100 images. Our evaluation criteria were based on sensitivity, specificity and accuracy.

Guidance Line Extraction Algorithm using Central Region Data of Crop for Vision Camera based Autonomous Robot in Paddy Field (비전 카메라 기반의 무논환경 자율주행 로봇을 위한 중심영역 추출 정보를 이용한 주행기준선 추출 알고리즘)

  • Choi, Keun Ha;Han, Sang Kwon;Park, Kwang-Ho;Kim, Kyung-Soo;Kim, Soohyun
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • In this paper, we propose a new algorithm of the guidance line extraction for autonomous agricultural robot based on vision camera in paddy field. It is the important process for guidance line extraction which finds the central point or area of rice row. We are trying to use the central region data of crop that the direction of rice leaves have convergence to central area of rice row in order to improve accuracy of the guidance line. The guidance line is extracted from the intersection points of extended virtual lines using the modified robust regression. The extended virtual lines are represented as the extended line from each segmented straight line created on the edges of the rice plants in the image using the Hough transform. We also have verified an accuracy of the proposed algorithm by experiments in the real wet paddy.

Face Feature Extraction Method ThroughStereo Image's Matching Value (스테레오 영상의 정합값을 통한 얼굴특징 추출 방법)

  • Kim, Sang-Myung;Park, Chang-Han;Namkung, Jae-Chan
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.4
    • /
    • pp.461-472
    • /
    • 2005
  • In this paper, we propose face feature extraction algorithm through stereo image's matching value. The proposed algorithm detected face region by change the RGB color space of skin color information to the YCbCr color space. Applying eye-template from extracted face region geometrical feature vector of feature about distance and lean, nose and mouth between eye extracted. And, Proposed method could do feature of eyes, nose and mouth through stereo image's matching as well as 2D feature information extract. In the experiment, the proposed algorithm shows the consistency rate of 73% in distance within about 1m and the consistency rate of 52%in distance since about 1m.

  • PDF

A Study on the Technique of Spectrum Flattening for Improved Pitch Detection (개선된 피치검출을 위한 스펙트럼 평탄화 기법에 관한 연구)

  • 강은영;배명진;민소연
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.310-314
    • /
    • 2002
  • The exact pitch (fundamental frequency) extraction is important in speech signal processing like speech recognition, speech analysis and synthesis. However the exact pitch extraction from speech signal is very difficult due to the effect of formant and transitional amplitude. So in this paper, the pitch is detected after the elimination of formant ingredients by flattening the spectrum in frequency region. The effect of the transition and change of phoneme is low in frequency region. In this paper we proposed the new flattening method of log spectrum and the performance was compared with LPC method and Cepstrum method. The results show the proposed method is better than conventional method.

Detection of eye using optimal edge technique and intensity information (눈 영역에 적합한 에지 추출과 밝기값 정보를 이용한 눈 검출)

  • Mun, Won-Ho;Choi, Yeon-Seok;Kim, Cheol-Ki;Cha, Eui-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.196-199
    • /
    • 2010
  • The human eyes are important facial landmarks for image normalization due to their relatively constant interocular distance. This paper introduces a novel approach for the eye detection task using optimal segmentation method for eye representation. The method consists of three steps: (1)edge extraction method that can be used to accurately extract eye region from the gray-scale face image, (2)extraction of eye region using labeling method, (3)eye localization based on intensity information. Experimental results show that a correct eye detection rate of 98.9% can be achieved on 2408 FERET images with variations in lighting condition and facial expressions.

  • PDF

Face Region Extraction using Object Unit Method (객체 단위 방법을 사용한 얼굴 영역 추출)

  • 선영범;김진태;김동욱;이원형
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.6
    • /
    • pp.953-961
    • /
    • 2003
  • This paper suggests an efficient method to extract face regions from the com]]lex background. Input image is transformed to color space, where the data is independent of the brightness and several regions are extracted by skin color information. Each extracted region is processed as an object. Noise and overlapped objects ate removed. The candidate objects, faces are likely to be included in, are selected by checking the sizes of extracted objects, the XY ratio, and the distribution ratio of skin colors. In this processing, the objects without face are excluded out of candidate regions. The proposed method can be applied for successful extraction of face regions under various conditions such as face extraction with complex background, slanted faces, and face with accessories, etc.

  • PDF

SEGMENTATION AND EXTRACTION OF TEETH FROM 3D CT IMAGES

  • Aizawa, Mitsuhiro;Sasaki, Keita;Kobayashi, Norio;Yama, Mitsuru;Kakizawa, Takashi;Nishikawa, Keiichi;Sano, Tsukasa;Murakami, Shinichi
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.562-565
    • /
    • 2009
  • This paper describes an automatic 3-dimensional (3D) segmentation method for 3D CT (Computed Tomography) images using region growing (RG) and edge detection techniques. Specifically, an augmented RG method in which the contours of regions are extracted by a 3D digital edge detection filter is presented. The feature of this method is the capability of preventing the leakage of regions which is a defect of conventional RG method. Experimental results applied to the extraction of teeth from 3D CT data of jaw bones show that teeth are correctly extracted by the proposed method.

  • PDF

A method for Character Segmentation using Frequence Characteristics and Back Propagation Neural Network (주파수 특성과 역전파 신경망 알고리즘을 이용한 문자 영역 분할 방법)

  • Chun Byung-Tae;Song Chee-Yang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.4 s.42
    • /
    • pp.55-60
    • /
    • 2006
  • The proposed method uses FFT(Fast Fourier Transform) and neural networks in order to extract texts in real time. In general, text areas are found in the higher frequency domain, thus, can be characterized using FFT. The neural network are learned by character region(high frequency) and non character region(low frequency). The candidate text areas can be thus found by applying the higher frequency characteristics to neural network. Therefore, the final text area is extracted by verifying the candidate areas. Experimental results show a perfect candidate extraction rate and about 95% text extraction rate. The strength of the proposed algorithm is its simplicity, real-time processing by not processing the entire image.

  • PDF