• Title/Summary/Keyword: Regenerator design

Search Result 55, Processing Time 0.02 seconds

Experimental Study on a GM-type Two-Stage Pulse Tube Refrigerator for Cryopump Applications

  • Lee, S.J.;Hong, Y.J.;Park, S.J.;Kim, H.B.;Kwon, S.B.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.2
    • /
    • pp.35-38
    • /
    • 2007
  • A single-stage and two-stage pulse tube refrigerators have been designed for cryopump application. The different diameters of pulse tube and regenerator have been investigated at single-stage pulse tube refrigerator(PTR). Experiments have been performed on single-stage PTR to reach minimum temperature with optimum valve opening at a few frequencies. And the two-stage pulse tube refrigerators have been assembled with tested single-stage pulse tube and tested. When orifice turn is opened to 9 and double inlet is opened to 3 at a single-stage, the lowest temperature of 33.7 K is achieved. The cooling capacity at single-stage is 38 W at temperature of 80 K. A two-stage pulse tube refrigerator has 16.3K at the second stage and 59.7K at the first stage. The cooling capacity achieved is 16.5 W at 80 K, the first stage and 0.6 W at 20 K, the second stage. Some details on the design of pulse tube refrigerator and the experimental apparatus are given.

A Study of th Optimum of closed ${CO}_{2}$ Gas Turbine Process for Nuclear Energy Power Plant(II) - For Optimal Design of Heat Exchanger- (원자력 발전소에 대한 밀폐 ${CO}_{2}$ 가스터빈 프로세스의 최적화 연구 (II) -열교환기의 설계에 관하여 -)

  • 이찬규;이종원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.251-258
    • /
    • 1990
  • Optimal design of heat exchanger for closed CO$_{2}$ gas turbine plant of three processes selected from the result of cycle analysis have been discussed previously paper(I) has been carried out under specified inlet and outlet conditions. Independent variables such as number of parallel connection, tube diameter, shell side and tube side pressure loss as well as dependent variables such as shell diameter, number of tubes, number of serial connections were all characterized according to the standardization or so. Search method was used to construct a computer simulation together with the calculation of heat transfer rate by logarithmic mean temperature difference method. Strength analysis of major parts was carried to examine their dimensions satisfying heat transfer and pressure loss requirements.

Design and Exergy Analysis for a Combined Cycle using LNG Cold/Hot Energy (액화천연가스 냉온열을 이용한 복합사이클의 설계 및 엑서지 해석)

  • Lee Geun Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.4
    • /
    • pp.285-296
    • /
    • 2005
  • In order to reduce the compression power and to use the overall energy contained in LNG effectively, a combined cycle is devised and simulated. The combined cycle is composed of two cycles; one is an open cycle of liquid/solid carbon dioxide production cycle utilizing LNG cold energy in $CO_2$ condenser and the other is a closed cycle gas turbine which supplies power to the $CO_2$ cycle, utilizes LNG cold energy for lowering the compressor inlet temperature, and uses the heating value of LNG at the burner. The power consumed for the $CO_2$ cycle is investigated in terms of a production ratio of solid $CO_2$. The present study shows that much reduction in both $CO_2$ compression power (only $35\%$ of power used in conventional dry ice production cycle) and $CO_2$ condenser pressure could be achieved by utilizing LNG cold energy and that high cycle efficiency ($55.3\%$ at maximum power condition) in the gas turbine could be accomplished with the adoption of compressor inlet cooling and regenerator. Exergy analysis shows that irreversibility in the combined cycle increases linearly as a production ratio of solid $CO_2$ increases and most of the irreversibility occurs in the condenser and the heat exchanger for compressor inlet cooling. Hence, incoming LNG cold energy to the above components should be used more effectively.

A Study on Stirling Cryocooler for Precooling Hydrogen Liquefier (수소액화 예냉용 소형 스털링 극저온 냉동기 특성 연구)

  • PARK, SEONGJE;KO, JUNSEOK;HONG, YONGJU;KIM, HYOBONG;YEOM, HANKIL;IN, SEHWAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.6
    • /
    • pp.651-659
    • /
    • 2016
  • Korea Institute of Machinery & Materials (KIMM) has developed a high efficient Stirling cryocooler with moving magnet linear compressor for precooling hydrogen liquefier and cooling high temperature superconductor (HTS) devices, such as superconductor cable and superconductor fault current limiters. Hydrogen liquefier and HTS electric devices require cryocooler with cooling capacity of hundred watts to kilowatts at 77 K. The compressor in the Stirling cryocooler uses opposed moving magnet linear motors to drive opposed pistons. High efficient Stirling cryocooler is designed by SAGE-software, manufactured and tested systematically. A cooling capacity of 1 kW at 77 K with an electric input power of 9.6 kW has been analyzed. But prototype test results of the Stirling cryocooler have the cooling capacity of 0.65 kW at 76.8 K with an electric input power of 8.1 kW. And then, 21.5% Carnot COP (Coefficient of performance) of the prototype Stirling cryocooler is achieved. The comparison analysis between SAGE-model and experimental results has shown the direction for further design optimization of the Stirling cryocooler.

A Study on the Design of the Free-Piston Stirling Engine/Alternator (자유 피스톤 스털링엔진/발전기의 설계 인자 연구)

  • Park, Seongje;Hong, Yongju;Ko, Junseok;Kim, Hyobong;Yeom, Hankil;In, Sehwan;Kang, Insu;Lee, Cheongsu
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.6
    • /
    • pp.648-655
    • /
    • 2014
  • This paper describes the continuing effort to develope a single acting free-piston Stirling engine/alternator combination for use of the household cogeneration. Free piston Stirling engines(FPSE) use variations of working gas pressure to drive mechanically unconstrained reciprocating elements. Stirling cycle free-piston engines are driven by the Stirling thermodynamic cycle which is characterized by an externally heated device containing working gas that is continuously re-used in a regenerative, reversible cycle. The ideal cycle is described by two isothermal process connected by two constant volume processes. Heat removed during the constant volume cooling process is internally transferred to the constant volume heating process by mutual use of a thermal storage medium called the regenerator. Since the ideal cycle is reversible, the ideal efficiency is that of Carnot. Free-piston Stirling engine is have no crank and rotating parts to generate lateral forces and require lubrication. The FPSE is typically comprised of two oscillating pistons contained in a common cylinder. The temperature difference across the displacer maintains the oscillations, and the FPSE operate at natural frequency of the mass-spring system. The power is generated from a linear alternator. The purpose of this paper is to describe the design process of the single acting free-piston Stirling engine/alternator. Electrical output of the single acting free-piston Stirling engine/alternator is about 0.95 kW.