• Title/Summary/Keyword: Regenerative combustion

Search Result 116, Processing Time 0.022 seconds

A Study on the Cooling Mechanism in Liquid Rocket Engine of 10tf-Thrust Level using Kerosene as a Fuel (케로신을 연료로 하는 10톤급 액체로켓엔진의 냉각 기구에 관한 연구)

  • Han, Pung-Gyu;Nam-Gung, Hyeok-Jun;Jo, Won-Guk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.10
    • /
    • pp.66-72
    • /
    • 2003
  • The cooling mechanism for a liquid rocket engine of 10tf-thrust using kerosene as a fuel was studied from the viewpoint of both the regenerative and curtain cooling. Based on the concept of a highly-stratified gas flow in the combustion chamber, the cross section of the combustion chamber was spilt into 2 independent parts, core and exterior part. Additional fuel is injected into the exterior section and gas temperature can be reduced in the exterior section. Consequently, the heat flux into the coolant and wall temperature are reduced and the thermal stability of a liquid rocket en g i.ne could be improved.

An Experimental Study on Cooling Characteristics for Uni-element Injector face according to the Swirl Chamber in Fuel Injector (연료 인젝터 스월 챔버 유무에 따른 단일 인젝터 페이스 냉각 특성 연구)

  • Jeon, Jun-Su;Shin, Hun-Cheol;Yang, Jae-Jun;Ko, Young-Sung;Kim, Yoo;Kim, Ji-Hoon;Chung, Hae-Seung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.148-151
    • /
    • 2007
  • We made two injectors that were equal to all design except for existence or nonexistence of swirl chamber of fuel part, because we want to find cooling characteristics at the injector face according to existence or non existence of swirl chamber of fuel part. And we set regenerative cooling channel in injector face for protecting injector face for prolonged combustion time. Two injectors were performed hot firing test, and then we compared cooling characteristics of two injectors. Also we compared O/F ratio effects on cooling characteristics and combustion characteristics.

  • PDF

Experimental Study on Nozzle Ablation in Liquid Rocket Engine (액체로켓의 노즐 삭마에 대한 실험적 연구)

  • Kim, J.W.;Park, H.H.;Kim, S.K.;Kim, Y.
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.3
    • /
    • pp.38-44
    • /
    • 2000
  • In general liquid rocket nozzles are protected from hot combustion gas by regenerative cooling techniques. But due to the complexity of the cooling system, it causes increase of system cost and frequently source of the system malfunction. Recently, instead of regenerative cooing, ablative material are used to protect combustion chamber wall and nozzle. To determine the nozzle material erosion rate and erosion shape, more than 500 hot fire test were performed by using 100 lb thrust experimental liquid rocket. Test variable were propellant feed sequence, injector, position of igniter and liquid oxygen supply temperature.

  • PDF

Prediction for Heat Transfer Characteristics of Supercritical Kerosene Using Mixture Surrogate (대체 혼합물을 이용한 케로신의 초임계 열전달 특성 예측)

  • Lee, Sanghoon;Yang, Inyoung;Park, Boo-min;Lee, Jinhee
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.294-296
    • /
    • 2017
  • In this study heat transfer characteristics of kerosene at supercritical condition was predicted. And a sample heat transfer calculation was performed using this result. The prediction was done by assuming kerosene as a mixture of a number of pure substances, and combining the thermodynamic properties of them, using NIST SUPERTRAPP. A regeneratively cooled supersonic combustor will be desinged using the resultant thermophysical property data of supercritical kerosene. Comparing with the combustion test results of the regenerative cooling combustor, the predicted thermophysical property data will be verified.

  • PDF

Fabrication of Full-Scale Combustion Chamber of Liquid Rocket Engine for Ground Hot Firing Tests (실물형 고압 연소기의 연소시험 검증용 제작)

  • Kim Jonggyu;Seo Seonghyeon;Kim Seunghan;Han Yeoungmin;Ryu Chulsung;Seol Wooseok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.305-308
    • /
    • 2005
  • This paper presents a fabrication of a full-stale combustion chamber of a liquid rocket engine for a ground hot firing test. Engine drawings for manufacturing were prepared after conceptual and detail designs. The combustor is composed of a head and a chamber. SUS316L is used for materials of the head because of the good quality in low temperature. Inner materials of the ablative cooling chamber is silica/phenolic and outer case materials is the SUS316L. Materials of the regenerative cooling chamber are C18200 and SUS316L. After lathe, general milling and MCT machinings, components were finished by electrolytic polishing. A brazing method was applied for bonding the injectors and the injector plate, the regenerative cooling chamber because of structure configurations.

  • PDF

Design and Fabrication of Full-Scale Regenerative Cooling Combustion Chamber (${\varepsilon}$=12) of Liquid Rocket Engine for Ground Hot Firing Tests (지상연소시험용 실물형 재생냉각 연소기(확대비 12)의 설계 및 제작)

  • Kim, Jong-Gyu;Han, Yeoung-Min;Seo, Seong-Hyeon;Lee, Kwang-Jin;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.114-118
    • /
    • 2007
  • Design and fabrication of a 30-tonf-class full-scale regenerative cooling combustion chamber of a liquid rocket engine for a ground hot firing test are described. It has chamber pressure of 60 bar and nozzle expansion ration of 12 and manufactured to have a single welded structure of· the mixing head and the chamber. The material of the mixing head is STS316L which has excellent mechanical property in cryogenic condition. The chamber comprise of the cylinder, nozzle throat, and 1st/2nd nozzle parts. The material of the inner jacket is copper alloy/STS329J1/STS316L and that of the outer jacket is STS329J1. The components of· the combustor were manufactured by mechanical processing including lathing, milling, MCT, rolling and pressing. The machined components were integrated to a single body by means of general welding, electron beam welding(EBW), and brazing.

  • PDF

Regenerative Cooling Characteristics for Cooling Parameters of a Combustor in Liquid Rocket Combustors (재생냉각 연소기의 냉각기구에 따른 냉각 특성 파악)

  • Kim, Hong-Jip;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.145-149
    • /
    • 2010
  • Thermal analyses have been performed to study the effect of location of fuel ring and thermal barrier coatings in regenerative cooling channels in a full-scale combustor. For the effective cooling, the fuel ring has better be installed near axial location of the low expansion ratio and low heat flux, and branching of cooling channels is preferable. Also, the radiative cooled nozzle extension is thought to be reasonable for the cooling of combustion walls. Among the possible coatings, $Y_2O_3$ stabilized $ZrO_2$ coating and Ni/Cr coating have been adopted. Compared with Ni/Cr coating which has high oxidation resistance, $Y_2O_3$ stabilized $ZrO_2$ coating, one of ceramic coatings is found to be much effective to sustain the thermal survivability of combustion walls.

  • PDF

Developing Trends of Spinning Process for Manufacturing Thrust Chamber of Launch Vehicle (발사체 연소기 제작에서 스피닝 공정 개발 동향)

  • Lee, Keumoh;Ryu, Chulsung;Choi, Hwanseok;Heo, Seongchan;Kwak, Junyoung;Choi, Younho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.6
    • /
    • pp.64-71
    • /
    • 2015
  • Spinning process is generally used for manufacturing axisymmetrical, thin-walled thickness and hollow circular cross-section parts. Traditional spinning technology is classified to conventional spinning and power spinning(shear spinning and flow forming). Literature surveys of spinning application for regenerative cooling chamber and divergent nozzle of liquid propellent rocket thrust chamber have been conducted. Most spinning technology has been used mandel for manufacturing chamber and nozzle. Recently, hot spinning has been used much compared to traditional cold spinning.

Development of a 1500N-thrust Swirling-Oxidizer-Flow-Type Hybrid Rocket Engine

  • Sakurazawa, Toshiaki;Kitagawa, Koki;Hira, Ryuji;Matsuo, Yuji;Sakurai, Takashi;Yuasa, Saburo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.849-854
    • /
    • 2008
  • We have been developing a 1500N-thrust Swirling-Oxidizer-Flow-Type hybrid rocket engine. In order to put the engine into practical use, we conducted long duration burning experiments up to 25s to examine the influence of configuration change of fuel grain on the engine performance and designed an LOX vaporization nozzle to supply GOX for the 1500N-thrust engine. The experiment with a small hybrid rocket engine showed that combustion was stable and the engine performance was approximately constant during combustion. There was no essential problem to with increasing combustion time. The LOX vaporization nozzle designed had 30 rectangular channels with a depth of 0.5mm. During passing through the nozzle, the LOX increased in temperature and vaporized sufficiently.

  • PDF

Performance Prediction of Heat Regenerators with using Spheres: Relation between Heat Transfer and Pressure Drop (구형 축열체를 사용한 축열기의 성능예측: 압력손실과 열전달의 관계)

  • 조한창;조길원;이용국
    • Journal of Energy Engineering
    • /
    • v.12 no.1
    • /
    • pp.35-41
    • /
    • 2003
  • Heat regenerator occupied by regenerative materials improves thermal efficiency of regenerative combustion system through the recovery of heat of exhaust gaset. By using one-dimensional two-phase fluid dynamics model, the unsteady thermal flow of heat regenerator with spherical particles, was numerically simulated to evaluate the heat transfer and pressure drop and thereby to suggest the parameter for designing heat regenerator. It takes about 7 hours for the steady state of the flow field in regenerator, in which heat absorption of regenerative particle is concurrent with the same magnitude of heat desorption. The regenerative particle experiences small temperature fluctuation below 10 K during the reversing process. The performance of thermal flow in heat regenerator varies with inlet velocity of exhaust gas and air, configuration of regenerator (cross-sectional area and length) and diameter of regenerative particle. As the gas velocity increases, the heat transfer between gas and particle enhances and with the increase the pressure losses. As particle diameter decreases, the air is preheated higher and the exhaust gases are cooled more with the increase of pressure losses.