• 제목/요약/키워드: Regenerative capacity

검색결과 131건 처리시간 0.028초

Three-dimensional printing for craniomaxillofacial regeneration

  • Gaviria, Laura;Pearson, Joseph J.;Montelongo, Sergio A.;Guda, Teja;Ong, Joo L.
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제43권5호
    • /
    • pp.288-298
    • /
    • 2017
  • Craniomaxillofacial injuries produce complex wound environments involving various tissue types and treatment strategies. In a clinical setting, care is taken to properly irrigate and stabilize the injury, while grafts are molded in an attempt to maintain physiological functionality and cosmesis. This often requires multiple surgeries and grafts leading to added discomfort, pain and financial burden. Many of these injuries can lead to disfigurement and resultant loss of system function including mastication, respiration, and articulation, and these can lead to acute and long-term psychological impact on the patient. A main causality of these issues is the lack of an ability to spatially control pre-injury morphology while maintaining shape and function. With the advent of additive manufacturing (three-dimensional printing) and its use in conjunction with biomaterial regenerative strategies and stem cell research, there is an increased potential capacity to alleviate such limitations. This review focuses on the current capabilities of additive manufacturing platforms, completed research and potential for future uses in the treatment of craniomaxillofacial injuries, with an in-depth discussion of regeneration of the periodontal complex and teeth.

Pig Pluripotent Stem Cells as a Candidate for Biomedical Application

  • Choi, Kwang-Hwan;Lee, Chang-Kyu
    • 한국동물생명공학회지
    • /
    • 제34권3호
    • /
    • pp.139-147
    • /
    • 2019
  • Stem cells are progenitor cells that are capable of self-renewal and differentiation into various cells. Especially, pluripotent stem cells (PSCs) have in vivo and in vitro differentiation capacity into three germ layers and can proliferate infinitely. The differentiation ability of PSCs can be applied for regenerative medicine and tissue engineering. In domestic animals, their PSCs have a potential for preclinical therapy as well as the production of transgenic animals and agricultural usage such as cultured meat. Among several domestic animals, a pig is considered as an ideal model for biomedical and agricultural purposes mentioned above. In this reason, studies for pig PSCs including embryonic stem cells (ESCs), embryonic germ cells (EGCs) and induced pluripotent stem cells (iPSCs) have been conducted for decades. Therefore, this review will discuss the history of PSCs derived from various origins and recent progress in pig PSC research field.

Biological activities and biomedical potential of sea cucumber (Stichopus japonicus): a review

  • Oh, Gun-Woo;Ko, Seok-Chun;Lee, Dong Hee;Heo, Soo-Jin;Jung, Won-Kyo
    • Fisheries and Aquatic Sciences
    • /
    • 제20권11호
    • /
    • pp.28.1-28.17
    • /
    • 2017
  • Members of the phylum Echinodermata, commonly known as echinoderms, are exclusively marine invertebrates. Among the Echinodermata, sea cucumber belongs to the family Holothuroidea. The sea cucumber Stichopus (Apostichous) japonicus (Selenka) is an invertebrate animal inhabiting the coastal sea around Korean, Japan, China, and Russia. Sea cucumber has a significant commercial value, because it contains valuable nutrients such as vitamins and minerals. They possess a number of distinctive biologically and pharmacologically important compounds. In particular, the body wall of sea cucumber is a major edible part. It consists of peptide, collagen, gelatin, polysaccharide, and saponin, which possess several biological activities such as anti-cancer, anti-coagulation, anti-oxidation, and anti-osteoclastogenesis. Furthermore, the regenerative capacity of sea cucumber makes it a medically important organism. This review presents the various biological activities and biomedical potential of sea cucumber S. japonicus.

DC전철구간의 에너지회생장치 개발 방향 (Direction for Development of Energy Regeneration Device for DC Electric Railway System)

  • 김용기;배창한;한문섭;양영철;장수진
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.804-808
    • /
    • 2007
  • when electric traction system used DC 1500V runs on decline of rail road track and slows down, Dc voltage goes beyond regular voltage. In this case extra power is forcibly wasted by resister because rectifier of substation and electric train including power converter and so on are out of order. This paper described a DC electric railway system, which can generate the excessive DC power form DC bus line to AC source in substation for traction system. The proposed regeneration inverter system for DC traction can be used as both an inverter and an active power filter(APF). As a regeneration inverter mode, it can recycle regenerative energy caused by decelerating tractions and as an active power filter mode, it can compensate for harmonic distortion produced by the rectifier substation. In addition, electric traction system products harmonic current and voltage distortion and reactive power because power converter is used so regeneration inverter normally runs such as active power filter(APF) for improving power quality. From the viewpoint of both power capacity and switching losses, the system is designed on the basis of three phase PWM inverters and composed of parallel inverters, output transformers, and an LCL filter.

  • PDF

폴리머 콘크리트 공작기계 베드의 설계와 제작 (Design and Manufacture of Polymer Concrete Machine Tool Bed)

  • 서정도;이대길;김태형;박보선;최원선
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.32-36
    • /
    • 2002
  • High-speed movement and high-precision machining are the two most important requirements of present machine tool structures to reduce machining time and to increase the precision of products in various industrial fields such as semiconductor, automobile, and mold fabrication. The high speed operation of machine tools tue usually restricted not only by the low stiffness but also by the low damping of machine tool structures, which induces vibration during high speed machining. If the damping of machine tool structures is low, self induced or regenerative vibrations are bound to occur at high speed operation because the natural frequencies of machine tool structures can not be increased indefinitely. Therefore, the high damping capacity of a machine tool structure is an important factor for high speed machine tool structures. Polymer concrete has high potential for machine tool bed due to its good damping characteristics. In this study, a polymer concrete bed combined with welded steel structure i.e., a hybrid structure was desisted and manufactured for a high-speed gantry-type milling machine through static and dynamic analyses using finite element method. Then the dynamic characteristics were tested experimentally.

  • PDF

제빙관의 형태변화에 따른 제빙특성 (Ice Making Characteristics According to Changing Shape of Ice Making Tube)

  • 정은호;박기원
    • 설비공학논문집
    • /
    • 제21권5호
    • /
    • pp.291-296
    • /
    • 2009
  • Ice accumulating system patterned ice-an-coil is the way of refrigerating regenerative materials on the surface of copper-tube inserted into the inside of ice-storage. The study experimented to understand ice-an-coil type ice making characteristics according to changing shape of ice making tube. The experiment were carried out under various conditions, that used brine temperature($-l0^{\circ}C$, $-6^{\circ}C$) brine flow rate(l.0m/s, 1.8m/s) and inlet water temperature($6^{\circ}C$, $12^{\circ}C$) etc. Mass of ice per making area increased according to the decrease of the brine temperature and inlet water temperature, but that was increased according to the increase of the brine flow rate. And I set up two hypotheses and compared the capacity of ice-making of the two cases; each had the same thermal area and one had an round-shaped copper tube but the other had an oval-shaped copper tube.

Clinical effectiveness of combining platelet rich fibrin with alloplastic bone substitute for the management of combined endodontic periodontal lesion

  • Goyal, Lata
    • Restorative Dentistry and Endodontics
    • /
    • 제39권1호
    • /
    • pp.51-55
    • /
    • 2014
  • The term "endo-perio" lesion has been proposed to describe the destructive lesion resulting from inflammatory products found in varying degrees in both the periodontium and the pulpal tissues. In most of the cases, clinical symptoms disappear following successful endodontic therapy. However failure after conventional root canal treatment calls for surgical intervention. A 35 year old male patient with endo-perio lesion in right maxillary lateral incisor was treated with platelet rich fibrin (PRF) and alloplastic bone substitute after conventional endodontic therapy. At the end of 6 months there was gain in clinical attachment, increased radiographic bone fill and reduction in probing depth which was maintained till 18 month follow-up. Present case report aims to evaluate the efficacy of PRF and alloplastic bone substitute in the management of intrabony defect associated with endo-perio lesion in maxillary lateral incisor because the healing potential of PRF and bone graft has not been widely studied in endodontics. The use of PRF allows the clinician to optimize tissue remodelling, wound healing and angiogenesis by the local delivery of growth factors and proteins. The novel technique described here enables the clinician to be benefited from the full regenerative capacity of this autologous biologic material.

Therapeutic applications of gene editing in chronic liver diseases: an update

  • Shin, Ji Hyun;Lee, Jinho;Jung, Yun Kyung;Kim, Kyeong Sik;Jeong, Jaemin;Choi, Dongho
    • BMB Reports
    • /
    • 제55권6호
    • /
    • pp.251-258
    • /
    • 2022
  • Innovative genome editing techniques developed in recent decades have revolutionized the biomedical research field. Liver is the most favored target organ for genome editing owing to its ability to regenerate. The regenerative capacity of the liver enables ex vivo gene editing in which the mutated gene in hepatocytes isolated from the animal model of genetic disease is repaired. The edited hepatocytes are injected back into the animal to mitigate the disease. Furthermore, the liver is considered as the easiest target organ for gene editing as it absorbs almost all foreign molecules. The mRNA vaccines, which have been developed to manage the COVID-19 pandemic, have provided a novel gene editing strategy using Cas mRNA. A single injection of gene editing components with Cas mRNA is reported to be efficient in the treatment of patients with genetic liver diseases. In this review, we first discuss previously reported gene editing tools and cases managed using them, as well as liver diseases caused by genetic mutations. Next, we summarize the recent successes of ex vivo and in vivo gene editing approaches in ameliorating liver diseases in animals and humans.

방사선 조사 백서 경골에 티타늄 임플랜트 매식후 골 치유에 관한 연구 (THE EXPERIMENTAL STUDY ON BONE HEALING AROUND TITANIUM IMPLANTS PLACED IN IRRADIATED RAT'S TIBIAE)

  • 곽병학;김종렬;박봉수;신상훈;성일용
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제29권6호
    • /
    • pp.379-391
    • /
    • 2003
  • The present study was undertaken to evaluate bone regenerative capacity around titanium screw implants placed in irradiated rat's tibiae. At one week after single 15-Gy dose irradiation, miniaturized titanium screw implants were inserted into anterior aspect of the upper tibia of rats weighing 200-250g. Seventy rats were involved: 35 rats were control and 35 rats radiation group. The rats were killed at different intervals as 1, 2, 3, 4, 6, 8, 12 weeks after implantation for histologic observation, histomorphometric analysis and immunohistochemical study with fibronectin and CD34 antibody. 1. Histologically, various stages of bone maturation and ossification can be seen at 4 weeks and regenerated bone close to edges demonstrates more advanced calcification, and network of new bone are well formed at 12 weeks in non-irradiated group. In contrast, active bone formation with increased contact of newly formed bone to implant surface was noted at 4 weeks and a significant amount of new bone formation and bone-implant contact is oberved at 12 weeks in irradiated group. 2. Histomorphometrical analysis confirmed these histologic findings. A significant difference in implant-bone contact and bone density was measured between the control and radiation group. Mean MBD was 62.2% in control group and 27.5% in radiation group, mean MBIC was 86.6% in control group and 47.7% in radiation group, and mean TBIC was 87.3% in control group and 45.6% in radiation group at 12 weeks after implantation. 3. In immunohistochemical study with fibronectin and CD34, radiation reduced hematopoietic progenitor cells severely and disturbed differentiation of osteoblast in bone marrow. The results of this study revealed bone healing capacity around implant after radiation therapy was severely impaired and irradiation reduces the capacity for osseointegration of titanium implants. Many factors including radiation dose, period between radiation and implantation, bone quality, time elapse between first and second surgery, type of prosthetics and hyperbaric oxygen therapy must be considered carefully in postradiation implantation.

재조합 백시니아 바이러스의 다양한 암세포 및 ABCG2 과발현 내성 암세포에 대한 항 종양 효과 연구 (In vitro Anti-tumor Effect of an Engineered Vaccinia Virus in Multiple Cancer Cells and ABCG2 Expressing Drug Resistant Cancer Cells)

  • 박지혜;윤지수;허정;황태호;권상모
    • 생명과학회지
    • /
    • 제26권7호
    • /
    • pp.835-846
    • /
    • 2016
  • 항암제 내성은 화학적 치료법의 가장 큰 난관의 하나로 효과적인 항암치료를 위해서 반드시 극복 되야 할 문제이다. ABCG2는 다약제 내성과 이를 특징으로 하는 암 줄기세포와의 연관성도 매우 높다고 보고되고 있다. 최근 암용해 바이러스가 다양한 암종과 항암제내성을 보이는 암 치료에 새로운 대안으로 대두되고 있다. 이에 본 연구에서는 항암제 내성 암 치료를 위해 새로운 암용해 백시니아 바이러스 SLJ-496을 개발하였다. 본 연구에서, cytophathic effect, plaque assay, viability assay를 통하여 야생형 바이러스에 비교하여 증가된 종양친화성을 확인하였다. 또한, invitro 환경에서 대장암 세포주(HT-29, HCT-116, HCT-8)를 비롯하여 위암 세포주(AGS, NCI-N87, MKN-28), 간암 세포주(SNU-449, SNU-423, SNU-475, HepG2) 그리고 난치성 암 종인 중피 세포종(NCI-H226, NCI-H28, MSTO-211h)에서 유의적인 세포독성효능을 입증하였다. ABCG2의 발현이 높은 HT-29세포의 3차원 구형배양을 통하여 ABCG2와 암줄기세포 특성의 연관성을 증명하였으며, 항암제 내성세포 모델에서 SLJ-496GFP가 유의한 세포독성을 나타내며 암세포내 복제능을 가지는 것을 입증하였다. ABCG2를 과발현 시킨 세포주 내 야생형 바이러스에 비교하여 유의적으로 낮은 세포 생존율을 증명하였으며, 바이러스의 복제능 또한 검증하였다. 또한, 지속적인 항암제 투여를 통하여 ABCG2의 발현이 높은 항암제 내성 세포주에서의 항종양 효능 또한 입증하였다. 이상의 결과를 토대로 ABCG2가 과발현 된 암 줄기세포 및 항암제 내성에 새로운 항종양 바이러스 SLJ-496 백시니아 바이러스 치료법이 새로운 치료 대안이 될 수 있을 것이라 제안한다.