• 제목/요약/키워드: Regenerative Medicine

검색결과 382건 처리시간 0.028초

Two Clinical Cases of Feline Hemoplasmosis in Korea

  • Kim, Young Ju;Bae, Hyeona;Shin, Sun Woo;Cho, ARom;Jeon, Yeseul;Hwang, Tae-Sung;Jung, Dong-In;Kim, Dae Young;Kang, Jun-Gu;Yu, DoHyeon
    • Parasites, Hosts and Diseases
    • /
    • 제60권2호
    • /
    • pp.127-131
    • /
    • 2022
  • Feline hemotropic mycoplasmosis (hemoplasmosis) is an infection of the red blood cells caused by the Mycoplasma haemofelis (Mhf), Candidatus Mycoplasma haemominutum (CMhm), and Candidatus Mycoplasma turicensis (CMt). The existence of Mhf, CMhm, and CMt has been demonstrated in feral cats in Korea using molecular methods, but no clinical cases have yet been reported. This study reports 2 clinical cases of hemotropic mycoplasmosis caused by CMhm and CMt in 2 anemic cats. The first case was a client-owned intact female domestic shorthair cat that presented with fever, pale mucous membranes, and normocytic normochromic non-regenerative anemia. Prior to referral, an immunosuppressive prednisolone dose was administered at the local veterinary clinic for 1 month. The cat was diagnosed with high-grade alimentary lymphoma. Organisms were found on the surface of the red blood cells on blood smear examination. The second case was of a rescued cat that presented with dehydration and fever. The cat had normocytic normochromic non-regenerative anemia. Necropsy revealed concurrent feline infectious peritonitis. Polymerase chain reaction assay targeting 16S rRNA revealed CMhm infection in case 1 and dual infection of CMhm and CMt in case 2. Normocytic normochromic non-regenerative anemia was observed in both cats before and during the management of the systemic inflammation. This is the first clinical case report in Korea to demonstrate CMhm and CMt infections in symptomatic cats.

BMP-2 Immoblized in BCP-Chitosan-Hyaluronic Acid Hybrid Scaffold for Bone Tissue Engineering

  • Nath, Subrata Deb;Abueva, Celine;Sarkar, Swapan Kumar;Lee, Byong Taek
    • 한국재료학회지
    • /
    • 제24권12호
    • /
    • pp.704-709
    • /
    • 2014
  • In this study, we fabricated a novel micro porous hybrid scaffold of biphasic calcium phosphate (BCP) and a polylectrolyte complex (PEC) of chitosan (CS) and hyaluronic acid (HA). The fabrication process included loading of CS-HA PEC in a bare BCP scaffold followed by lypophilization. SEM observation and porosimetry revealed that the scaffold was full of micro and macro pores with total porosity of more than 60 % and pore size in the range of $20{\sim}200{\mu}m$. The composite scaffold was mechanically stronger than the bare BCP scaffold and was significantly stronger than the CS-HA PEC polymer scaffold. Bone morphogenetic growth factor (BMP-2) was immobilized in CS-HA PEC in order to integrate the osteoinductive potentiality required for osteogenesis. The BCP frame, prepared by sponge replica, worked as a physical barrier that prolonged the BMP-2 release significantly. The preliminary biocompatibility data show improved biological performance of the BMP-2 immobilized hybrid scaffold in the presence of rabbit bone marrow stem cells (rBMSC).

생체 조직공학.재생의학 바이오 장기의 현재와 미래 (Trend and Current Status of Tissue Engineering and Regenerative Medicine)

  • 김문석;강길선;이일우;이해방
    • 한국진공학회지
    • /
    • 제16권1호
    • /
    • pp.58-64
    • /
    • 2007
  • 조직공학재생의학(조재학)은 생명과학과공학의 기본개념을 응용하여 생체조직을 만들고, 복원시키고, 변형시키기 위하여 새로운 디바이스나 생체조직 대용품을 만드는 학문분야이다. 조재학은 다학제간 연구개발하는 분야로써 매우 혁신적인 건강관리 및 치료 학문분야이다. 조재학의 큰 특징은 발전 속도가 빠른 첨단 과학 기술을 바탕으로 하고 있기 때문에 발전 속도가 빠르다는 점과 여러 분야의 지식과 기술을 함께 이용하기 때문에 다른 학문보다 관련 분야에 대하여 더욱 더 폭 넓은 이해를 필요로 하게 되므로 서로 다른 분야의 지식을 가진 과학자들의 협동 연구가 요구된다. 본 총설에서는 현재의 연구개발 동향 및 결과와 미래 가능성의 이해를 돕기위해 고찰하였다.

Polo-like kinase-1 in DNA damage response

  • Hyun, Sun-Yi;Hwan, Hyo-In;Jang, Young-Joo
    • BMB Reports
    • /
    • 제47권5호
    • /
    • pp.249-255
    • /
    • 2014
  • Polo-like kinase-1 (Plk1) belongs to a family of serine-threonine kinases and plays a critical role in mitotic progression. Plk1 involves in the initiation of mitosis, centrosome maturation, bipolar spindle formation, and cytokinesis, well-reported as traditional functions of Plk1. In this review, we discuss the role of Plk1 during DNA damage response beyond the functions in mitotsis. When DNA is damaged in cells under various stress conditions, the checkpoint mechanism is activated to allow cells to have enough time for repair. When damage is repaired, cells progress continuously their division, which is called checkpoint recovery. If damage is too severe to repair, cells undergo apoptotic pathway. If damage is not completely repaired, cells undergo a process called checkpoint adaptation, and resume cell division cycle with damaged DNA. Plk1 targets and regulates many key factors in the process of damage response, and we deal with these subjects in this review.

Preparation and Characterization of Genetically Engineered Mesenchymal Stem Cell Aggregates for Regenerative Medicine

  • Kim, Sun-Hwa;Moon, Hyung-Ho;Chung, Bong-Genn;Choi, Dong-Hoon
    • Journal of Pharmaceutical Investigation
    • /
    • 제40권6호
    • /
    • pp.333-337
    • /
    • 2010
  • Combining cell- and gene-based therapy is a promising therapeutic strategy in regenerative medicine. The aim of this study was to develop genetically modified mesenchymal stem cell (MSC) aggregates using a poly(ethylene glycol) (PEG) hydrogel micro-well array technique. Stable PEG hydrogel micro-well arrays with diameters of 200 to $500\;{\mu}m$ were fabricated and used to generate genetically engineered MSC aggregates. Rat bone marrow-derived MSCs were transfected with a green fluorescent protein (GFP) plasmid as a reporter gene, and aggregated by culturing in the PEG hydrogel micro-well arrays. The resultant cell aggregates had a mean diameter of less than $200\;{\mu}m$, and maintained the mesenchymal phenotype even after genetic modification and cell aggregation. Transplantation of MSC aggregates that are genetically modified to express therapeutic or cell-survival genes may be a potential therapeutic approach for regenerative medicine.

Phylogeny of Flavobacteria Group Isolated from Freshwater Using Multilocus Sequencing Analysis

  • Mun, Seyoung;Lee, Jungnam;Lee, Siwon;Han, Kyudong;Ahn, Tae-Young
    • Genomics & Informatics
    • /
    • 제11권4호
    • /
    • pp.272-276
    • /
    • 2013
  • Sequence analysis of the 16S rRNA gene has been widely used for the classification of microorganisms. However, we have been unable to clearly identify five Flavobacterium species isolated from a freshwater by using the gene as a single marker, because the evolutionary history is incomplete and the pace of DNA substitutions is relatively rapid in the bacteria. In this study, we tried to classify Flavobacterium species through multilocus sequence analysis (MLSA), which is a practical and reliable technique for the identification or classification of bacteria. The five Flavobacterium species isolated from freshwater and 37 other strains were classified based on six housekeeping genes: gyrB, dnaK, tuf, murG, atpA, and glyA. The genes were amplified by PCR and subjected to DNA sequencing. Based on the combined DNA sequence (4,412 bp) of the six housekeeping genes, we analyzed the phylogenetic relationship among the Flavobacterium species. The results indicated that MLSA, based on the six housekeeping genes, is a trustworthy method for the identification of closely related Flavobacterium species.

Treatment of Exogenous GDF9 and BMP15 during In Vitro Maturation of Oocytes increases the Cell Number of Blastocysts in Pigs

  • Kim, Min Ju;Kim, Young June;Shim, Hosup
    • 한국수정란이식학회지
    • /
    • 제31권1호
    • /
    • pp.9-12
    • /
    • 2016
  • Growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) are oocyte-specific growth factors that regulate many critical processes involved in early folliculogenesis and oocyte maturation. In this study, effects of GDF9 and BMP15 treatment during in vitro maturation of porcine oocytes upon development after parthenogenetic activation were investigated. Neither GDF, BMP15 alone nor in combination affects the number and viability of cumulus cells or the rates of oocyte maturation and blastocyst development. However, the treatment of GDF9 on porcine oocytes increased the number of trophectodermal (TE) cells of blastocysts derived from activated oocytes (P<0.05). The treatment of BMP15 increased the cell numbers of both inner cell mass (ICM) and TE cells (P<0.05). The treatment with the combination of GDF9 and BMP15 further increased the numbers of ICM and TE cells, compared with GDF9 or BMP15 treatment alone (P<0.05). In conclusion, the treatment of GDF9 or BMP15 (or both) enhanced the quality of blastocysts via the increased number of ICM and/or TE cells.

Periodontal regenerative therapy in endo-periodontal lesions: a retrospective study over 5 years

  • Oh, Soram;Chung, Shin Hye;Han, Ji-Young
    • Journal of Periodontal and Implant Science
    • /
    • 제49권2호
    • /
    • pp.90-104
    • /
    • 2019
  • Purpose: The aim of this study was to evaluate clinical and radiographic changes and the survival rate after periodontal surgery using deproteinized bovine bone mineral (DBBM) with 10% collagen or DBBM with a collagen membrane in endo-periodontal lesions. Methods: A total of 52 cases (41 patients) with at least 5 years of follow-up were included in this study. After scaling and root planing with or without endodontic treatment, periodontal regenerative procedures with DBBM with 10% collagen alone or DBBM with a collagen membrane were performed, yielding the DBBM + 10% collagen and DBBM + collagen membrane groups, respectively. Changes in clinical parameters including the plaque index, bleeding on probing, probing pocket depth, gingival recession, relative clinical attachment level, mobility, and radiographic bone gains were evaluated immediately before periodontal surgical procedures and at a 12-month follow-up. Results: At the 12-month follow-up after regenerative procedures, improvements in clinical parameters and radiographic bone gains were observed in both treatment groups. The DBBM + 10% collagen group showed greater probing pocket depth reduction ($4.52{\pm}1.06mm$) than the DBBM + collagen membrane group ($4.04{\pm}0.82mm$). However, there were no significant differences between the groups. Additionally, the radiographic bone gain in the DBBM + 10% collagen group ($5.15{\pm}1.54mm$) was comparable to that of the DBBM + collagen membrane group ($5.35{\pm}1.84mm$). The 5-year survival rate of the teeth with endo-periodontal lesions after periodontal regenerative procedures was 92.31%. Conclusions: This study showed that regenerative procedures using DBBM with 10% collagen alone improved the clinical attachment level and radiographic bone level in endo-periodontal lesions. Successful maintenance of the results after regenerative procedures in endo-periodontal lesions can be obtained by repeated oral hygiene education within strict supportive periodontal treatment.

Nuclear Transfer using Human CD59 and IL-18BP Double Transgenic Fetal Fibroblasts in Miniature Pigs

  • Ryu, Junghyun;Kim, Minjeong;Ahn, Jin Seop;Ahn, Kwang Sung;Shim, Hosup
    • 한국수정란이식학회지
    • /
    • 제31권1호
    • /
    • pp.1-7
    • /
    • 2016
  • Xenotransplantation involves multiple steps of immune rejection. The present study was designed to produce nuclear transfer embryos, prior to the production of transgenic pigs, using fibroblasts carrying transgenes human complement regulatory protein hCD59 and interleukin-18 binding protein (hIL-18BP) to reduce hyperacute rejection (HAR) and cellular rejection in pig-to-human xenotransplantation. In addition to the hCD59-mediated reduction of HAR, hIL-18BP may prevent cellular rejection by inhibiting the activation of natural killer cells, activated T-cell proliferation, and induction of $IFN-{\gamma}$. Transgene construct including hCD59 and ILI-18BP was introduced into miniature pig fetal fibroblasts. After antibiotic selection of double transgenic fibroblasts, integration of the transgene was screened by PCR, and the transgene expression was confirmed by RT-PCR. Treatment of human serum did not affect the survival of double-transgenic fibroblasts, whereas the treatment significantly reduced the survival of non-transgenic fibroblasts (p<0.01), suggesting alleviation of HAR. Among 337 reconstituted oocytes produced by nuclear transfer using the double transgenic fibroblasts, 28 (15.3%) developed to the blastocyst stage. Analysis of individual embryos indicated that 53.6% (15/28) of embryos contained the transgene. The result of the present study demonstrates the resistance of hCD59 and IL-18BP double-transgenic fibroblasts against HAR, and the usefulness of the transgenic approach may be predicted by RT-PCR and cytolytic assessment prior to actual production of transgenic pigs. Further study on the transfer of these embryos to surrogates may produce transgenic clone miniature pigs expressing hCD59 and hIL-18BP for xenotransplantation.

Effect of rearing system (free-range vs cage) on gut and muscle histomorphology and microbial loads of Italian White breed rabbits

  • Caterina Losacco;Antonella Tinelli;Angela Dambrosio;Nicoletta C. Quaglia;Letizia Passantino;Michele Schiavitto;Giuseppe Passantino;Vito Laudadio;Nicola Zizzo;Vincenzo Tufarelli
    • Animal Bioscience
    • /
    • 제37권1호
    • /
    • pp.151-160
    • /
    • 2024
  • Objective: The growing consumers' interest on animal welfare has raised the request of products obtained by alternative rearing systems. The present study was conducted to assess the influence of housing system on gut and muscle morphology and on microbial load in rabbits reared under free-range (FR) and cage system (CS). Methods: A total of forty weaned (35 days of age) male Italian White breed rabbits were allotted according to the rearing system, and at 91 days of age were randomly selected and slaughtered for the morphological evaluation of tissue from duodenum and longissimus lumborum. Morphometric analysis of the villus height, villus width, crypt depth, villus height/crypt depth ratio, and villus surface was performed. The microbial loads on hind muscle was determined by total mesophilic aerobic count (TMAC), Escherichia coli and Enterobacteriaceae; whereas, total anaerobic bacteria count (TABC) and TMAC, E. coli and Enterobacteriaceae was determined on caecal content. Results: Rearing system did not interfere with the duodenum and muscle histomorphology in both rabbit groups. Similarly, microbial load of caecal content showed no significant differences on the TABC and TMAC. Conversely, significant difference was found for E. coli strains in caecal content, with the lower counts in FR compared to CS rabbits (p<0.01). Microbiological assay of muscle revealed significant lower TMAC in FR vs CS rabbits (p< 0.05). All rabbit meat samples were negative for E. Coli and Enterobacteriaceae. Conclusion: Free-range could be considered a possible alternative and sustainable rearing system in rabbits to preserve gut environment and muscle quality.