• Title/Summary/Keyword: Refrigeration oil

Search Result 165, Processing Time 0.026 seconds

Influence of Refrigeration Oil on Evaporation Heat Transfer Characteristics of R-290 Inside Micro Fin Tube (마이크로 휜 증발관내 냉매 R-290의 열전달 특성에 미치는 냉동유의 영향)

  • Park, Cheol-Min;An, Young-Tae;Lee, Wook-Hyun;Kim, Jeung-Hoon;Kim, Jong-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.7
    • /
    • pp.938-944
    • /
    • 2000
  • Recently, micro fin tube is widely used to heat exchanger for high performance. And, as the alternative refrigerants for R-22, hydrocarbons such as R-290, R-600 and R-600a are very promising because of their low GWP and ODP. Thus, R-290 was used as working fluid in this study. Most design of heat exchanger had been based on heat transfer characteristics of pure refrigerant although refrigerant oil exists in the refrigeration cycles. So, the influence of oil on heat transfer characteristics have to be considered for investigating exact evaporation heat transfer characteristics. But, this is an unresolved problem of refrigeration heat transfer. Therefore the influence of the refrigeration oil to the evaporation heat transfer characteristics of R-290 were conducted in a horizontal micro tin tube. The mineral oil was used as refrigeration oil. The experimental apparatus consisted of a basic refrigeration cycle and a system for oil concentration measurement. Test conditions are as the follows; evaporation temperature $5^{\circ}C$, mass velocity 100 $kg/m^2s$, heat flux 10 $kW/m^2$, oil concentration 0, 1.3, 3.3, 5.7 wt.%, and quality $0.07{\sim}1.0$. When refrigeration oil was entered, oil foaming was observed at the low quality region. And, very small bubbles were observed as quality was increased. Pressure drop and heat transfer coefficient increased as the concentration of refrigeration oil increased to 5 wt.%.. The performance index of heat exchanger was the highest near 3.3 wt.%.

An Experimental Study on PAG and POE Oils Return in $CO_2$ Evporator Model ($CO_2$ 냉동시스템 증발기에서 PAG 및 POE 오일 회수에 관한 실험적 연구)

  • Lee, Sung-Kwang;Kang, Byung-Ha;Kim, Suk-Hyun
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.646-651
    • /
    • 2007
  • This study has been conducted to select the suitable refrigeration oil for a $CO_2$ refrigeration system. The oil return is one of the most important characteristics for refrigeration oils. PAG and POE oils are considered as a test fluids in this study. An evaporator model is employed to simulate the evaporator of a $CO_2$ refrigeration system. Oil return characteristics has been investigated for $CO_2$/PAG and $CO_2$/POE mixtures in the range of oil concentration 0 to 5 weight-percent and the mixture temperature range of $0^{\circ}C$ to $15^{\circ}C$. The results obtained indicate that oil return is decreased with an increase in the oil concentration and mixture temperature for both POE and PAG oils. It is also found that POE oil is seen to be superior than PAG oil in terms of oil return in an evaporator of a $CO_2$ refrigeration system.

  • PDF

Correlations of Oil Concentration Prediction during In-line Flow of $CO_2/Oil$ Mixtures (유동중인 $CO_2$냉매와 오일 혼합물의 농도 예측을 위한 상관식)

  • Park, Keun-Seo;Kang, Byung-Ha;Park, Kyoung-Kuhn;Kim, Suk-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.10
    • /
    • pp.718-725
    • /
    • 2007
  • In the general vapor-compression refrigeration system, refrigeration lubricant circulates in refrigeration system with refrigerant. Knowledge of the amount of circulating lubricant is very important to exactly calculate capacity of the refrigeration system. An experimental study was conducted to estimate the oil concentration of a flowing $CO_2/Oil$ mixtures. POE and PAG oil are considered as test lubricants in this study. Performance tests were conducted under simulated liquid conditions for $CO_2/POE$ oil mixture in oil concentration of 0 to 10 weight-percent and $CO_2/PAG$ oil mixture in oil concentration of 0 to 6 weight-percent in the temperature ranges of $-5^{\circ}C\;to\;15^{\circ}C$. The results obtained indicate specific gravity of $CO_2/Oil$ mixture is increased as oil concentration is increased and as temperature of mixture is decreased. Oil concentration correlation of $CO_2/POE$ oil mixture and $CO_2/PAG$ oil mixture is suggested, based on the measurement of specific gravity and temperature. This correlation enable to predict the oil concentration without extraction of the mixture and can be applied for $CO_2/POE$ mixtures and $CO_2/PAG$ mixtures.

A study on prediction of oil concentration in the R-407C and R-410A refrigeration system (대체냉매 R-407C와 R-410A를 사용하는 냉동시스템의 오일농도 예측에 관한 연구)

  • 이종문;김창년;박영무
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.3
    • /
    • pp.384-390
    • /
    • 1999
  • A vibrating U-Tube decimeter has been evaluated as a sensor for measuring the concentration of oil in the liquid line of a refrigeration system. Calibration and performance tests were conducted under simulated liquid-line conditions for R-407C/POE oil and R-410A/POE oil mixtures in oil concentration from 0 to 15 weight percent. Test temperatures ranged from 20 to 5$0^{\circ}C$. As a result of test, oil concentration correlations are presented in terms of specific gravity at each constant temperature. These equations enable to predict the oil concentration without any extraction of the mixture, and can be applied for R-407C/POE oil and R-410A/POE oil mixtures.

  • PDF

An Experimental Study on the Oil Circulation in an Inverter-Driven Heat Pump (인버터 열펌프내 오일순환량에 관한 실험적 연구)

  • 민만기;홍기수;황윤제;황일남;김철민;조관식
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.8
    • /
    • pp.717-724
    • /
    • 2000
  • It is important to investigate characteristics of flow of refrigerant/oil mixture circulating in a refrigeration system. Therefore the oil concentration in refrigerant/oil mixture should be measured exactly by the adequate measuring instrument. In this paper, the oil concentration was measured by density monitoring system(DMS) in the liquid-line of a inverter-driven heat pump. Experimental result follows ; the main factor that have an effect on oil concentration refrigerant/oil mixture circulating in a refrigeration system is the momentum and kinematic viscosity of refrigerant/oil mixture compressed by scroll compressor.

  • PDF

An Experimental Study on Non-hygroscopic Propertiy of PAG and POE Oils for a $CO_2$ Refrigeration System ($CO_2$ 냉동시스템용 PAG오일과 POE오일의 항흡습성에 관한 실험적 연구)

  • Lee, Sung-Kwang;Kang, Byung-Ha
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.6
    • /
    • pp.388-393
    • /
    • 2008
  • This study has been conducted to select the suitable refrigeration oil for a $CO_2$ refrigeration system. Non-hygroscopic property of refrigeration oils is one of the most important properties for refrigeration oils. PAG and POE oils are considered as test oils in this study. Transient variation of water content of PAG and POE oils was measured for 3 different vessels in the environmental conditions, such as in the range of temperature $25^{\circ}C$ to $40^{\circ}C$ and relative humidity 40% to 85%. The results obtained that water content of both POE and PAG is increased with an increase in the contact area with ambient for 3 different vessels. It is also found that water content of both POE and PAG is increased as the ambient temperature and relative humidity is increased. Non-hygroscopic property of POE oil is found to be much superior than that of PAG oil.

PI Controller Design of the Refrigeration System Based on Dynamic Characteristic of the Second Order Model

  • Jung, Young-Mi;Jeong, Seok-Kwon;Yang, Joo-Ho
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.200-206
    • /
    • 2014
  • This paper deals with deterministic PI controller design based on dynamic characteristics for refrigeration system. The temperature control system of an oil cooler is described as a typical 2nd order model of the refrigeration system which has zeros in a transfer function. PI controller gains satisfying control specifications are represented by the dynamic characteristic functions using relationship between the parameters and the control specifications in the model. Phase margin was considered to increase robustness of the oil cooler control system. Furthermore, the influence of zeros in the model to the control specifications was analyzed in detail for improving control performance. The validity of the suggested PI controller design was investigated using the four types of gains which had been already confirmed their control performances through experiments.

Effects of Refrigerant and Oil Charges on the Performance of an Refrigeration System (냉동기유 주입량과 냉매 충진량에 따른 냉동기 성능 평가)

  • 선종관;채수남;정동수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.8
    • /
    • pp.617-625
    • /
    • 2002
  • In this study, effects of refrigerant and oil charges on the performance of a refrigeration system simulating an automobile air conditioner have been experimentally investigated using R134a and PAG oil. Measurements were taken in a breadboard type refrigeration test unit with a compressor used for a commercial automobile air-conditioner under a set of condition imposed upon normally to automobile air conditioners. Both the COP and capacity decreased rapidly as the oil charge increased because of the decrease in vapor pressure of the circulating refrigerant/oil mixture. The excess oil left in the evaporator also caused heat transfer degradation resulting in a decrease in capacity and in turn COP. It was found that there is an optimum refrigerant charge at which the COP becomes the maximum. Below this optimum charge, both the capacity and COP increased as the refrigerant charge increased and above the optimum charge, both of them remained almost constant. Hence, the COP seems to be the most important factor in determining the optimum refrigerant charge. When the system was undercharged, the refrigerant at the condenser exit lost subcooling and showed a sign of poor miscibility.

An Experimental Study on Correlation between Oil Discharge and Various Operating Conditions of a CO2 Compressor (CO2 압축기의 운전조건과 오일토출의 상관분석에 관한 실험적 연구)

  • Lee, Ik-Soo;Kang, Byung-Ha
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.1
    • /
    • pp.73-79
    • /
    • 2011
  • A portion of oil for lubrication of compressor flows together with refrigerant in the refrigeration system. If the oil discharge from a compressor is increased in the refrigeration system, not only pressure drop is increased in other components, such as evaporator and gas cooler, but also heat transfer coefficient in the heat exchangers is decreased. Oil discharge rate from a compressor may strongly depend on operating conditions of a compressor. In this study, one stage single rotary compressor is employed for measuring oil circulation ratio(OCR). Carbon dioxide and PAG oil are used as refrigerant and lubricant. Using a U-tube densimeter, mixture density is measured. Oil circulation ratio(OCR) can be estimated by measured mixture density. The results obtained indicate that the oil circulation ratio(OCR) is increased as the suction temperature or compressor operating frequency is increased. Oil circulation ratio(OCR) correlation of the compressor is also suggested.

Prediction of density and viscosity for $CO_2$-oil mixture at low oil concentration (낮은 오일 농도에서 $CO_2$-Oil 혼합물의 밀도와 점성예측)

  • Yun, Rin
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.136-141
    • /
    • 2008
  • Due to environmental concerns $CO_2$ has been reintroduced as a potential candidate to replace HFCs in refrigeration systems since 1990s. In a refrigeration cycle, oil is utilized in lubricating a compressor. However, although oil separators are installed after a compressor oil is prone to leak to the whole system. The mixing of $CO_2$ and oil, even a small amount of oil, the heat transfer performance in heat exchanger deteriorated and the pressure drop inside tube increases. Therefore, it is needed to precisely estimate the mixture thermodynamic properties of $CO_2$-lubricant oil to correctly design a $CO_2$ refrigeration system. The commonly used method in estimating the mixture properties is the mole based weighting model. However, the accuracy of the method can not be assured. In the present study, $CO_2$-lubricant oil mixture properties including viscosity and density were estimated by using the mixture models, based on the equation of state (EOS).

  • PDF