• 제목/요약/키워드: Refrigeration Vehicles

검색결과 34건 처리시간 0.026초

친환경 소화약제 Novec1230을 적용하는 궤도차량용 소화기밸브 개발 (Development of Fire Extinguisher Valves for Tracked Vehicle Using Novec1230)

  • 김종열;구학근;오상석
    • 한국산학기술학회논문지
    • /
    • 제12권4호
    • /
    • pp.1539-1546
    • /
    • 2011
  • 할론(Halon)은 소화능력이 뛰어나 특수용도의 소화약제로 사용되었지만 오존층 파괴물질로 지목되어 생산 및 사용이 중단되었다. 할론의 대체 소화약제로 Novec1230이 유력하여, 이를 궤도차량용 소화기의 소화약제로 사용하기 위해 소화기 밸브의 구조를 Novec1230의 특성에 맞게 개발해야 한다. 따라서 대체 소화약제용 소화기 밸브의 구조를 6가지로 제작을 완료하였다. 이들의 성능을 검증하기 위해 시험실을 제작하여 비화재시의 소화약제의 분사 형상과 분사 시간을 실험하였으며, 화재시 소화능력을 파악하였다. 그 결과 A타입과 F타입의 밸브가 다른 4가지 타입보다 20% 이상 그리고 미군의 육군기준(MIL-DTL-62547)인 2-3초보다 178%이상 빠른 시간에 진화되는 친환경 소화약제이므로 Novec1230에 적합하다는 것을 알았다.

공회전 제한장치 차량에서 냉방 성능 유지를 위한 축냉 시스템 적용에 대한 연구 (Feasibility Study of Cold Storage System to Maintaining Cooling Performance for ISG Vehicle)

  • 이대웅
    • 설비공학논문집
    • /
    • 제28권1호
    • /
    • pp.7-14
    • /
    • 2016
  • This study explores the feasibility of a cold storage system to provide thermal comfort for idle stop and go (ISG) vehicles. ISG function is the most valuable and environmental friendly technology in the current automobile industry. However, when an ISG vehicle stops, meaning when the engine standstill, the air-conditioning system does not work, because the compressor also stops. Therefore, passenger thermal comfort is not maintained, as cold air is not provided in the cabin. Consequently, many automakers have studied electric air-conditioning systems based on electrically-driven compressors or cold storage systems using phase-change materials. The experiments herein were conducted for the feasibility testing of different types of cold storage heat-exchangers, cold storage mediums, and thermo-expansion valves with current air-conditioners. The auxiliary cold storage system, filled with phase-change materials, was located behind the evaporator and almost stacked on top of it. In the experimental results, the air discharge temperature rate of increase was better than the conventional air-conditioning system when the compressor stopped and thermal comfort was maintained with $1.9{\sim}4.3^{\circ}C$ decreases within 60 seconds. The #1 cold storage heat-exchanger (CSH), #2 thermo-expansion valve (TXV) and #2 phase change material (PCM) were chosen because of the best temperature rise delay. It was concluded that a cold storage system is an effective solution for ISG vehicles to maintain thermal comfort during short engine stops.

터널주행 고속전철의 환기시스템 제어 방법에 관한 연구 (A Study on the Control Method of Ventilating System for High Speed Train in a Tunnel)

  • 최영석
    • 설비공학논문집
    • /
    • 제13권3호
    • /
    • pp.184-193
    • /
    • 2001
  • The present study develops programs simulating the internal pressure change of cars due to the change of external pressure when trains run into or passing each other in a tunnel. A new continuous ventilating system control method has been developed in order to alleviate the aural discomfort of passengers riding a high speed train. This method is based on the change of the charged and discharged flow rate by detecting the air pressures generated outside and inside of the train. When the outside and inside pressure are detected, the speed of the charge or exhaust fans and also the valve opening ratios are changed. The elementary performance of the system is checked using dta of the TGV-K high speed train at a speed of 300km/h. Moreover, applicability of the system to the Koran high speed train at a speed of 350 km/h is ascertained by simulation and its effectiveness as a means to alleviate the ear pains is confirmed. This application of the system to the Korean high speed vehicles running in the speed range of 350km/h is considered to have good prospect.

  • PDF

일정 열유속 조건의 판형 히터에 의한 해빙과정의 수치해석 (Numerical Analysis of the Melting Process of Ice Using Plate Heaters with Constant Heat Flux)

  • 김학구;정시영;허남건;임태원;박용선
    • 설비공학논문집
    • /
    • 제19권6호
    • /
    • pp.434-440
    • /
    • 2007
  • One of the cold start problems of a FCV is the freezing of the water in the water tank when a FCV is not in operation and the surrounding temperature drops below $0^{\circ}C$. The ice in the tank should be melted as quickly as possible for a satisfactory operation of fuel cell vehicles. In this study, the melting process for the constant heat fluxes of the plate heaters was numerically calculated in the 2-D model of the tank and plate heaters. The enthalpy method and FVM code was used for this analysis. The changes of the temperature with heat fluxes and the heat transfer area could be investigated. The energy balance error was found to increase with the heat flux. From this numerical analysis, the proper heat flux value and some important design factors relating local overheating and pressurization of the water tank could be examined.

고속도로 요금소 주변의 대기오염 현황에 관한 연구 (A study on the condition of air pollution near tollbooths on highway)

  • 김신도;박성규;봉춘근;김종호;강혜진;이의상
    • 설비공학논문집
    • /
    • 제11권3호
    • /
    • pp.359-368
    • /
    • 1999
  • The outdoor and indoor air quality surrounding highway have been measured, and the study on the design of the booth shape and the air-conditioning system also has been carried out. For the first step of the work, the air quality at the Seoul tollgate on the Kyeong-bu highway was monitored over a year. The measured indoor air quality shows seasonal average concentration 85.6-92.1ppb of >;$NO_2$and the $SO_2$and CO lower than the EAQS(Environmental Air Quality Standards). The measured TSP concentration was much higher than the EAQS. In conclusion, there is necessity to improve the working environment of the tollbooths on highways, and the current air-conditions need to be modify for the purpose. In the process of modifying the air-conditioning system, particulate pollutants needs to be considered processing and the priority needs to be put on the booths for big vehicles.

  • PDF

자동차 배기폐열 회수용 열전발전 시스템의 성능에 관한 연구 (Experimental Study on Thermoelectric Generator Performance for Waste Heat Recovery in Vehicles)

  • 이대웅
    • 설비공학논문집
    • /
    • 제26권6호
    • /
    • pp.287-293
    • /
    • 2014
  • Internal combustion engines release 30~40% of the energy from fossil fuels into the atmosphere in the form of exhaust gases. By utilizing this waste heat, plenty of energy can be conserved in the auto industry. Thermoelectric generation is one way of transforming the energy from engine's exhaust gases into electricity in a vehicle. The thermoelectric generators located on the exhaust pipe have been developed for vehicle applications. Different experiments with thermoelectric generators have been conducted under various test conditions as following examples: hot gas temperature, hot gas mass flow rate, coolant temperature, and coolant mass flow rate. The experimental results have shown that the generated electrical power increases significantly with the temperature difference between the hot and the cold side of the thermoelectric generator and the gas flow rate of the hot-side heat exchanger. In addition, the gas temperature of the hot-side heat exchanger decreases with the length of the thermoelectric generator, especially at a low gas flow rate.

자동차 에틸렌글리콜 부동액의 혼합 농도 측정 장치 개발 (Device Development of Mixture Concentration of Ethylene Glycol Antifreeze Coolant for Vehicles)

  • 이대웅;이은웅
    • 설비공학논문집
    • /
    • 제28권8호
    • /
    • pp.331-336
    • /
    • 2016
  • This study presents a coolant density calculation device and its corresponding method by using a mass flowmeter and the LabVIEW program. The method can be easily measured with a mixture of coolant and by calculating the percentage of ethylene-glycol without additional investment. The cooling water is very important in a vehicle to protect the engine, and the cooling performance is affected by the mixture concentration and coolant density. The coolant density calculation device measures the mixed concentration in the anti-freeze cooling mixture made from distilled water and ethylene-glycol in real time with the mass flowmeter that is commonly attached to the radiator or heater core. The calculation program for the mixture concentration percentage was developed using the LabVIEW software. The correlation between experimental results and the calculation was conducted for a range of temperature from 40 to $90^{\circ}C$ and by varying the mixture ratio of distilled water and ethylene-glycol. As a result, the anti-freeze coolant concentration in the volume percentage is able to monitor the coolant density in a timely basis by implementing a mixture concentration calculation program without the need for additional equipment investment. The results of the calculation for the mixture concentration level show a maximum 2.7% deviation compared to the experimental results.

A Dynamic Test Facility for Mobile Air Conditioning Systems

  • Gado, Amr;Hwang, Yun-Ho;Radermacher, Reinhard
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제15권4호
    • /
    • pp.147-155
    • /
    • 2007
  • Mobile air conditioning systems work under widely changing operating conditions. To understand the system behavior under such dynamic conditions, a test facility that can impose transient loads as well as conducting dynamic measurements is needed. To test mobile air conditioning systems including their dynamic performance under various drive cycle patterns without using full scale vehicles in a wind tunnel, a new test facility, called "dynamic simulator," is described. It can replicate real vehicle operating conditions by interacting with the system being tested based on the measured system performance and subsequently adjusting the air properties returning to the test system based on the results of a numerical cabin model. A new dynamic simulator has been designed, constructed, and verified for performing dynamic tests. It was successful in controlling the temperature and relative humidity of the air returning to the test unit within ${\pm}0.7^{\circ}C$ and ${\pm}4%$ of their respective intended values. The verification test under the New European Driving Cycle demonstrated that detailed transient behavior of the mobile air conditioning system could be measured by using this dynamic simulator.

열전소자를 이용한 차량용 독립 냉난방시스템에 대한 실험적 연구 (Experimental Study of Standalone Cooling and Heating System using Thermoelectric Element for Vehicles)

  • 이대웅
    • 설비공학논문집
    • /
    • 제26권8호
    • /
    • pp.375-380
    • /
    • 2014
  • The purpose of this paper is to investigate the cooling and heating performance of a standalone-type thermoelectric system equipped with a thermoelectric module. The system consists of a blower and two thermoelectric modules with a fin, which is soldered onto both sides of the thermoelectric module and a courtesy light. The thermoelectric system experiment is conducted with the intake voltage to find the optimum cooling and heating performance of each. The results showed that the cooling capacity and coefficient of performance (COP) were 22 W and 0.31, and the heating capacity and COP were 147 W and 1.1, respectively. In the vehicle cooling and heating performance test in a climate wind tunnel, the results showed that the standalone thermoelectric system's cooling performance was slightly better than the base system; and the heating performance of the standalone thermoelectric system was $54.1^{\circ}C$ and the COP was 1.3, compared to the base system.

자연냉매인 CO2를 이용한 냉동탑차 냉장시스템과 핵심부품개발에 관한 연구 (A Study of Development of Regrigerated Truck Small Scale Cooling System and Key-Part using Natural Refrigerants.)

  • 정세진;박성신;민호기;조가영
    • 한국가스학회지
    • /
    • 제23권1호
    • /
    • pp.19-26
    • /
    • 2019
  • 본 연구에서는 친환경적 냉매로 주목받고 있는 이산화탄소 자연 냉매를 이용하여 1톤 크기의 냉동 탑차에 들어가는 냉방 시스템을 개발하고, COP를 올리기 위해 열교환기 및 Unit cooler를 설계하였다. 또한 LNG의 기존 CNG 5톤 냉동탑차를 LNG 차량으로 개조하여 냉방시스템의 효율을 높임과 동시에 CNG 대비 안전성을 확보하였다. 결과적으로 1톤 및 5톤 크기에서 자연 냉매를 사용한 친환경적인 냉동탑차를 개발하였다.