• Title/Summary/Keyword: Refrigerant Reduction

Search Result 71, Processing Time 0.024 seconds

Evaluation of a Prototype SF6 Purification System for Commercialization

  • Seo, Hai-Kyung;Lee, Jeong Eun;Kim, Kwang Sin;Kim, Kyeongsook
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.1
    • /
    • pp.53-58
    • /
    • 2020
  • Korea Electric Power Corporation (KEPCO) uses large amount of SF6, one of the potent greenhouse gases, in electric equipment for electrical insulation. KEPCO is developing SF6 recovery and purification technology to minimize the release of SF6 into the environment, to secure certified emission reduction, and to save purchase cost of new SF6 by reusing the refined SF6. A prototype SF6 purification system using cryogenic solidification technology has been built in demonstration scale. To evaluate the feasibility of the commercialization, the system has been operated to purify large amount of used SF6 in a long-term operation and the performance has been economically evaluated. The system was stable enough for commercial operation such that it was able to purify 5.4 tons of used SF6 from power transmission equipment in 2-month operation. Over 99% of the SF6 was recovered from the used gas and the purity of the purified gas was over 99.7 vol%. The operation cost, which is the cost of refrigerant (liquid nitrogen), electricity and labor, per kilogram of purified SF6 was 6,526 KRW. Considering the price of new SF6 in Korea is about 15,000 KRW per kilogram this year, about 56% of the purchase cost can be saved.

Performance of HCFC22 Alternatives R1270, R290, R1270/R290, R290/HFC152a, R1270/R290/RE170 Refrigerants for Air-conditioning and Heat Pump Applications (HCFC22 대체 R290, R1270 및 R1270/R290, R290/HFC152a, R1270/R290/RE170 혼합냉매의 공기조화기와 열펌프 작동범위에서의 성능 평가)

  • Hwang Ji-Hwan;Baek In-Cheol;Jung Dong-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.4
    • /
    • pp.312-319
    • /
    • 2006
  • In this study, performance of 2 pure hydrocarbons and 7 mixtures was measured in an attempt to substitute HCFC22 used in air-conditioners and heat pumps. The mixtures were composed of R1270 (propylene), R290 (propane), HFC152a, and RE170 (Dimethyl ether, DME). The pure and mixed refrigerants tested have GWPs of $3{\sim}58$ as compared to that of $CO_2$ and the mixtures are all near-azeotropic showing the gliding temperature difference (GTD) of less than $0.6^{\circ}C$. Thermodynamic cycle analysis was carried out to determine the optimum compositions and actual tests were performed in a laboratory heat pump test bench at the evaporation and condensation temperatures of 7.5 and $45.1^{\circ}C$ respectively. Test results show that the coefficient of performance (COP) of these mixtures is up to 5.7% higher than that of HCFC22. While propane showed 11.5% reduction in capacity, most of the fluids tested had the similar capacity to that of HCFC22. Compressor discharge temperatures were reduced by $11{\sim}17^{\circ}C$ with these fluids. There was no problem with mineral oil since the mixtures were mainly composed of hydrocarbons. The amount of charge was reduced up to 55% as compared to HCFC22. Overall, these fluids provide good performance with reasonable energy savings without any environmental problem and thus can be used as long term alternatives for. residential air-conditioning and heat pumping application.

Frost Heave of Frost Susceptible Soil According to Performance of Thermo-syphon (열 사이펀 성능에 따른 동상민감성 지반의 거동 비교)

  • Park, Dong-Su;Shin, Mun-Beom;Seo, Young-Kyo
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.10
    • /
    • pp.27-40
    • /
    • 2021
  • The construction method to prevent the frost heave or thaw settlement is called the ground stabilization method, and the thermo-syphon is one of the typical ground stabilization methods. The thermo-syphon has recently been developed with a simple analysis model and thermal analysis has been carried out, but the frost heave of frost susceptible soil was not considered. This study was conducted using ABAQUS internal user subroutine to develop the numerical analysis model (Coupled thermo-mechanical) that can simultaneously perform thermal analysis for the temperature change of the soil according to the thermo-syphon and structural analysis to predict the frost heave of the soil accordingly. As a result of the numerical analysis, the frost heave of the soil decreased as the performance of the thermo-syphon increased. As for the main results, when the thermo-syphon which has contain 25%, 50%, and 100% of refrigerant filling ratio was applied, the reduction ratio of the frost heave was 5.5%, 14.4%, and 21% respectively.

Estimation of Domestic Greenhouse Gas Emission of Refrigeration and Air Conditioning Sector adapting 2006 IPCC GL Tier 2b Method (국내 냉동 및 냉방부문 온실가스 배출량 산정 - 2006 IPCC GL Tier 2b 적용 -)

  • Shin, Myung-Hwan;Lyu, Young-Sook;Seo, Kyoung-Ae;Lee, Sue-Been;Lim, Cheolsoo;Lee, Sukjo
    • Journal of Climate Change Research
    • /
    • v.3 no.2
    • /
    • pp.117-128
    • /
    • 2012
  • The Government of South Korea has continued its effort to fixate virtuous circle of economic growth and climate change response to cope with international demands and pressure to commitment for greenhouse gas reduction effectively. Nationally, Korean Government has established "Enforcement of the Framework Act on Low carbon, Green Growth"(2010. 4. 13) to implement national mid-term GHG mitigation goal(30% reduction by 2020 compare to BAU), which established the foundation for phased GHG mitigation by setting up the sectoral and industrial goal, adopting GHG and Energy Target Management System. Also, follow-up measures are taken such as planning and control of mid-term and short-term mitigation target by detailed analysis of potential mitigation of sector and industry, building up the infrastructure for periodic and systematic analysis of target management. Likewise, it is required to establish more accurate, reliable and detailed sectoral GHG inventory for successfully establishment and implement the frame act. In comparison to the $CO_2$ emission, Especially fluorinated greenhouse gases (HFCs, PFCs, $SF_6$) are lacking research to build the greenhouse gas inventories to identify emissions sources and collection of the applicable collection activities data. In this study, with the refrigeration and air conditioning sector being used to fluorine refrigerant(HFCs) as the center, greenhouse gas emission estimation methodology for evaluating the feasibility of using this methodology look over and mobile air conditioning, fixed air conditioning, household refrigeration equipment, commercial refrigeration equipment for the greenhouse gas emissions were calculated. First look at in terms of methodology, refrigeration and air conditioning sector GHG emissions in developing country-specific emission factors and activity data of the industrial sector the construction of the DB is not enough, it's 2006 IPCC Guidelines Tier 2a (emission factor approach) rather than the Tier 2b (mass balance approach) deems appropriate, and each detail by process, sectoral activity data more accurate, if DB is built Tier 2a (emission factor approach) can be applied will also be judged. Refrigeration and air conditioning sector in 2009 due to the use of refrigerant greenhouse gas emissions ($CO_2eq.$) assessment results, portable air conditioner 1,974,646 ton to year, fixed-mount air conditioner 1,011,754 ton to year, household refrigeration unit 4,396 ton to year, commercial refrigeration equipment 1,263 ton to year was estimated to total 2,992,037 tons.

Optimization of Single-stage Mixed Refrigerant LNG Process Considering Inherent Explosion Risks (잠재적 폭발 위험성을 고려한 단단 혼합냉매 LNG 공정의 설계 변수 최적화)

  • Kim, Ik Hyun;Dan, Seungkyu;Cho, Seonghyun;Lee, Gibaek;Yoon, En Sup
    • Korean Chemical Engineering Research
    • /
    • v.52 no.4
    • /
    • pp.467-474
    • /
    • 2014
  • Preliminary design in chemical process furnishes economic feasibility through calculation of both mass balance and energy balance and makes it possible to produce a desired product under the given conditions. Through this design stage, the process possesses unchangeable characteristics, since the materials, reactions, unit configuration, and operating conditions were determined. Unique characteristics could be very economic, but it also implies various potential risk factors as well. Therefore, it becomes extremely important to design process considering both economics and safety by integrating process simulation and quantitative risk analysis during preliminary design stage. The target of this study is LNG liquefaction process. By the simulation using Aspen HYSYS and quantitative risk analysis, the design variables of the process were determined in the way to minimize the inherent explosion risks and operating cost. Instead of the optimization tool of Aspen HYSYS, the optimization was performed by using stochastic optimization algorithm (Covariance Matrix Adaptation-Evolution Strategy, CMA-ES) which was implemented through automation between Aspen HYSYS and Matlab. The research obtained that the important variable to enhance inherent safety was the operation pressure of mixed refrigerant. The inherent risk was able to be reduced about 4~18% by increasing the operating cost about 0.5~10%. As the operating cost increases, the absolute value of risk was decreased as expected, but cost-effectiveness of risk reduction had decreased. Integration of process simulation and quantitative risk analysis made it possible to design inherently safe process, and it is expected to be useful in designing the less risky process since risk factors in the process can be numerically monitored during preliminary process design stage.

A Study on the Factors Affecting the Influence Ranges of Ammonia Leakage by Using KORA Program (KORA 프로그램을 활용한 암모니아 누출사고 영향범위 결정 기여요인 연구)

  • Lim, Hyeongjun;Kwak, Sollim;Jung, Jinhee;Ryu, Taekwon;Choi, Woosoo;Lee, Jieun;Lee, Jinseon;Lee, Yeonhee;Kim, Jungkon;Yoon, Junheon;Ryu, Jisung
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.3
    • /
    • pp.38-44
    • /
    • 2018
  • Ammonia is used primarily as a refrigerant in refrigeration facility and SCR of a plant, and is frequently involved in leakage accidents. This study was conducted by selecting ammonia, a material with a wide influence range when evaluated, as a material with higher vapor pressure and lighter than air. In this study, the influence ranges were computed using KORA(Korea Off-site Risk Assessment supporting tool) with four different environmental factors : ground roughness, sealing, operating temperature, pressure, and leakage hole size. As a result, the difference in the influence range of ground roughness is approximately 4.62 times, while the ammonia storage tank shows a difference in the reduction rate of 0.64 when sealed. The extent of impact increased with increasing leakage depending on storage temperature and pressure, and when storing higher than the saturation vapor pressure, the impact range showed an average growth rate of 3.45 % per 0.1 Mpa($45^{\circ}C$). The influence ranges based on the size of the leakage holes is shown to be proportional to the area of the leakage zone.

A Study on the Thermo-Flow Analysis of Air Conditioning Electric Compressor Motor System for Hybrid Electric Vehicles (하이브리드 자동차 에어컨용 전동식 압축기 모터 시스템의 열유동 해석 연구)

  • Kim, Sung Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.592-597
    • /
    • 2013
  • The heat generated at the motor and inverter inside the electric compressor of inverter built-in type is mainly cooled by refrigerant and generally, there is not a thermal problem. However, the close relation of heat transfer from the motor and inverter parts to the compression part affects on compressor efficiency. Also, according to the surrounding environment and system operation condition, the increased temperature of the motor and inverter can affect the power density of the motor system, and especially, the inverter may be prevented to operate by the temperature limits. In this study, we performed thermo-flow analysis of electric compressor motor system, and investigated the heat dissipation enhancement of the motor and inverter. The motor part in the operation region of the electric compressor was generally maintained at low temperature and the inverter part at high compressor speed was lower temperature than the temperature limit of $85^{\circ}C$. However, the case of the inverter at low speed harsh condition was in excess of $10^{\circ}C$. Therefore, in order to solve the thermal problem, the heat reduction technology of the motor and inverter is essential as well as the improvement of flow path in the compressor.

Field Cooling Tests of Paddy Stored in Steel Bins with a Grain Cooler (곡물냉각기를 이용한 철제 원형빈에서 벼 냉각)

  • 김의웅;김동철
    • Food Science and Preservation
    • /
    • v.11 no.2
    • /
    • pp.263-268
    • /
    • 2004
  • Two field cooling tests were conducted to evaluate the cooling characteristic of paddy with a prototype grain cooler. The first test was carried out during summer season in a steel bin with 180.3ton of paddy at Sunchon. And the second test was carried out during harvesting season in a steel bin with 272.2ton of paddy at Ulsan. At the first test, initial paddy temperature of 23.6$^{\circ}C$ was dropped to 14$^{\circ}C$, and initial moisture content of 19.9% was dropped to 19.3% after 52.5 hours of cooling. At the second test, initial paddy temperature of 16.1$^{\circ}C$ dropped to 5.5$^{\circ}C$ after 78.0 hours of cooling. And, at the first test, the average air flow rates of chilled air leaving the grain cooler and penetrating the grain layer were 77.5 ㎥/min and 42.5 ㎥/min, respectively. To prevent leakage of chilled air from plenum chamber of steel bin, which was about 45% of the average air flow rates of chilled air leaving the grain cooler, a proper method was required. The average total power consumption at the first test during summer was 22.1 ㎾ with control of fan damper. At the second test, it was 17.4 ㎾ due to controlling the capacity of compressor with unloading solenoid valve and changing the flow rates of hot refrigerant gas flowing into evaporator and reheater from compressor, resulting in 27% reduction of energy consumption.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2009 (설비공학 분야의 최근 연구 동향 : 2009년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Lee, Dae-Young;Kim, Seo Young;Choi, Jong-Min;Baik, Yong-Kyu;Kwon, Young-Chul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.7
    • /
    • pp.492-507
    • /
    • 2010
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2009. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends of thermal and fluid engineering have been surveyed as groups of general thermal and fluid flow, fluid machinery and piping, and new and renewable energy. Various topics were covered in the field of general thermal and fluid flow such as an expander, a capillary tube, the flow of micro-channel water blocks, the friction and anti-wear characteristics of nano oils with mixtures of refrigerant oils, etc. Research issues mainly focused on the design of micro-pumps and fans, the heat resistance reliability of axial smoke exhaust fans, and hood systems in the field of fluid machinery and piping. Studies on ground water sources were executed concerning two well type geothermal heat pumps and multi-heat pumps in the field of new and renewable energy. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics and industrial heat exchangers. Researches on heat transfer characteristics included the heat transfer in thermoelectric cooling systems, refrigerants, evaporators, dryers, desiccant rotors. In the area of industrial heat exchangers, researches on high temperature ceramic heat exchangers, plate heat exchangers, frosting on fins of heat exchangers were performed. (3) In the field of refrigeration, papers were presented on alternative refrigerants, system improvements, and the utilization of various energy sources. Refrigeration systems with alternative refrigerants such as hydrocarbons, mixed refrigerants, and $CO_2$ were studied. Efforts to improve the performance of refrigeration systems were made applying various ideas of suction line heat exchangers, subcooling bypass lines and gas injection systems. Studies on heat pump systems using unutilized energy sources such as river water, underground water, and waste heat were also reported. (4) Research trend in the field of mechanical building facilities has been found to be mainly focused on field applications rather than performance improvements. In the area of cogeneration systems, papers on energy and economic analysis, LCC analysis and cost estimating were reported. Studies on ventilation and heat recovery systems introduced the effect on fire and smoke control, and energy reduction. Papers on district cooling and heating systems dealt with design capacity evaluation, application plan and field application. Also, the maintenance and management of building service equipments were presented for HVAC systems. (5) In the field of architectural environment, various studies were carried to improve indoor air quality and to analyze the heat load characteristics of buildings by energy simulation. These studies helped to understand the physics related to building load characteristics and to improve the quality of architectural environment where human beings reside in.

Recent Progress in Air-Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2008 (설비공학 분야의 최근 연구 동향: 2008년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Choi, Chang-Ho;Lee, Dae-Young;Kim, Seo-Young;Kwon, Yong-Il;Choi, Jong-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.12
    • /
    • pp.715-732
    • /
    • 2009
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2008. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends in thermal and fluid engineering have been surveyed in the categories of general fluid flow, fluid machinery and piping, new and renewable energy, and fire. Well-developed CFD technologies were widely applied in developing facilities and their systems. New research topics include fire, fuel cell, and solar energy. Research was mainly focused on flow distribution and optimization in the fields of fluid machinery and piping. Topics related to the development of fans and compressors had been popular, but were no longer investigated widely. Research papers on micro heat exchangers using nanofluids and micro pumps were also not presented during this period. There were some studies on thermal reliability and performance in the fields of new and renewable energy. Numerical simulations of smoke ventilation and the spread of fire were the main topics in the field of fire. (2) Research works on heat transfer presented in 2008 have been reviewed in the categories of heat transfer characteristics, industrial heat exchangers, and ground heat exchangers. Research on heat transfer characteristics included thermal transport in cryogenic vessels, dish solar collectors, radiative thermal reflectors, variable conductance heat pipes, and flow condensation and evaporation of refrigerants. In the area of industrial heat exchangers, examined are research on micro-channel plate heat exchangers, liquid cooled cold plates, fin-tube heat exchangers, and frost behavior of heat exchanger fins. Measurements on ground thermal conductivity and on the thermal diffusion characteristics of ground heat exchangers were reported. (3) In the field of refrigeration, many studies were presented on simultaneous heating and cooling heat pump systems. Switching between various operation modes and optimizing the refrigerant charge were considered in this research. Studies of heat pump systems using unutilized energy sources such as sewage water and river water were reported. Evaporative cooling was studied both theoretically and experimentally as a potential alternative to the conventional methods. (4) Research papers on building facilities have been reviewed and divided into studies on heat and cold sources, air conditioning and air cleaning, ventilation, automatic control of heat sources with piping systems, and sound reduction in hydraulic turbine dynamo rooms. In particular, considered were efficient and effective uses of energy resulting in reduced environmental pollution and operating costs. (5) In the field of building environments, many studies focused on health and comfort. Ventilation. system performance was considered to be important in improving indoor air conditions. Due to high oil prices, various tests were planned to examine building energy consumption and to cut life cycle costs.