• Title/Summary/Keyword: Refrigerant R-22

Search Result 243, Processing Time 0.025 seconds

Prediction and Experiment of Pressure Drop of R22, R407C and R410A on Design Conditions of Condenser (응축기의 설계조건에서 R22, R407C, R410A의 압력강하 예측 및 실험)

  • 김창덕;박일환;이진호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.1
    • /
    • pp.42-53
    • /
    • 2004
  • An experimental study on the refrigerant-side pressure drop of slit fin-tube heat exchanger has been carried out. A comparison was made between the predictions of previously proposed empirical correlations and experimental data for the pressure drop on design conditions of condenser in micro-fin tube for R22 and its alternatives, R407C (R32/125/134a, 23/25/52 wt.%) and R410A (R32/125, 50/50 wt.%). Experiments were carried out under the conditions of inlet refrigerant temperature of 6$0^{\circ}C$ and mass fluxes varying from 150 to 250 kg/$m^2$s for R22, R407C and R410A. The inlet air conditions are dry bulb temperature of 35$^{\circ}C$, relative humidity of 40% and air velocity varying from 0.68 to 1.43 m/s. Experiments show that pressure drop for R410A and R407C were 17.8∼20.2% and 5∼6.8% lower than those of R22 respectively for the degree of subcooling of 5$^{\circ}C$. For the mass fluxes of 200∼250 kg/$m^2$s, the deviation between the experimental and predicted values for the pressure drop was less than $\pm$20% for R22, R407C and R410A.

Experimental Study for Evaporation Heat Transfer and Pressure Drop of R-22 and R-407C in an Inner Diameter of 4.3 mm and 6.4 mm (내경 4.3 mm와 6.4 mm관내 R-22와 R-407C의 증발 열전달과 압력강하에 관한 실험연구)

  • Son, Chang-Hyo;Roh, Geon-Sang
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.3
    • /
    • pp.43-49
    • /
    • 2008
  • The evaporation heat transfer coefficient and pressure drop of R-22 and R-407C in horizontal copper tubes were investigated experimentally. The main components of therefrigerant loop are a receiver, a compressor, a mass flow meter, a condenser and a double pipe type evaporator (test section). The test section consists of a smooth copper tube of 4.3 mm and 6.4 mm inner diameter. The refrigerant mass fluxes were varied from 100 to $300[kg/m^2s]$ and the saturation temperature of evaporator were 5 [$^{\circ}C$]. The evaporation heat transfer coefficients of R-22 and R-407C rise with the increase in mass flux and vapor quality. The evaporation heat transfer coefficient of R-22 for inner diameter tube of 4.3 mm and 6.4 mm is about $7.3{\sim}47.1%$ and $5.68{\sim}46.6%$ higher than that of R-407C, respectively.

  • PDF

An Experimental Study on Pressure drop Characteristics in Plate and Shell Heat Exchanger (Plate and Shell 열교환기내의 R-22 응축압력강하 특성에 관한 실험적 연구)

  • 이기백;서무교;박재홍;김영수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.1220-1227
    • /
    • 2001
  • The condensation pressure drop fur refrigerant R-22 flowing in the plate and shell heat exchanger were investigated experimentally in this study. Two vertical counterflow channels were formed in the exchanger by three plates of commercial geometry with a corrugated trapezoid shape of a chevron angel of $45^{\circ}$. The condensing R-22 flowing down in one channel exchanges heat with the cold water flowing up in the other channel. The effects of the mean vapor quality, mass flux, average imposed heat flux and system pressure of R-22 on the pressure drop were explored in detail. The quality change of R-22 between the inlet and outlet of the refrigerant channel ranges from 0.03 to 0.05. The present data showed that pressure drop increases with the vapor quality. At a higher mass flux, pressure drop is higher for the entire range of the vapor quality. Also, a rise in the average imposed heat flux causes an slight increase in the Pressure drop. Finally, at a higher system pressure the pressure drop is found to be slightly lower. Correlation is also provided for the measured pressure drops in terms of the friction factor.

  • PDF

A Study on the Performance Characteristics of the Soft Ice Cream Machine Run by Refrigerant Mixture (R-290/R-32) (혼합냉매(R-290/R-32)를 사용하는 소프트 아이스크림 제조기의 성능 특성에 관한 연구)

  • Kim, Nea-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.719-725
    • /
    • 2017
  • Frozen milk products are commonly made in small refrigeration machines. R-502 has long been used as a refrigerant for soft ice cream machines, but it is being replaced with R-404A due to the issue of ozone layer depletion. However, R-404A has high global warming potential, so it also needs to be replaced. In this study, a mixture of R-290 and R-32 was considered as a new refrigerant. An optimization and performance evaluation of the mixture were conducted for a freezer volume of 2.8 liters. The focus of the optimization was the appropriate refrigerant charge and the opening of the expansion valve. At the optimized conditions, ice cream was produced in 6 minutes and 24 seconds with the mixture, and the COP was 0.83. For R-404A, the ice cream production time was 6 minutes and 22 seconds, and the COP was 0.90. The results may be used for the design of food refrigeration machines and to optimize other refrigeration cycles.

The Study on Performance Characteristics in Refrigeration System using R717 and R22 as working fluid (냉매 R717과 R22를 작동유체로 이용한 냉동장치의 성능특성에 관한 연구)

  • Kim, Jin-Hyun;Kim, Jae-Geun;Kim, Jong-Gil;Kim, Yang-Hyun;Hong, Suk-Ju;Ha, Ok-Nam
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.495-500
    • /
    • 2006
  • Nowadays HCFCs refrigerant are restricted because it cause depletion of ozone layer. However, natural gases such as ammonia as an organic compound, propane and propylene as hydrocarbon are easy and cheap to obtain as well as environmental. Accordingly, this experiment apply the $NH_3$ and R22 to study the performance characteristic from the superheat control and compare the energy efficiency of two refrigerants from the high performance. The condensing pressure of refrigeration system is increased from 15bar to 16bar and degree of superheat is increased from 0 to $10^{\circ}C$ at each condensing pressure. As the result of experiment, when comparing the each COP, we knew the $NH_3$ is suitable as the alternative refrigerant of the R22.

  • PDF

Performance of Heat Pumps Charged with R170/R290 Mixture (R170/R290 혼합냉매 적용 히트펌프 성능 평가)

  • Park, Ki-Jung;Lee, Cheol-Hee;Jung, Dong-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.9
    • /
    • pp.590-598
    • /
    • 2008
  • In this study, performance of R170/R290 mixtures is measured on a heat pump bench tester in an attempt to substitute R22. The bench tester is equipped with a commercial hermetic rotary compressor providing a nominal capacity of 3.5kW. All tests are conducted under the summer cooling and winter heating conditions of $7/45^{\circ}C$ and $-7/41^{\circ}C$ in the evaporator and condenser respectively. During the tests, the composition of R170 is varied from 0 to 10% with an interval of 2%. Test results show that the coefficient of performance (COP) and capacity of R290 are up to 15.4% higher and 7.5% lower than those of R22 for both conditions respectively. For R170/R290 mixture, the COP decreases and the capacity increases with an increase in the amount of R170. The mixture of 4%R170/96%R290 shows the similar capacity and COP as those of R22. For the mixture, the compressor discharge temperature is $16{\sim}30^{\circ}C$ lower than that of R22. There is no problem with mineral oil since the mixture is mainly composed of hydrocarbons. The amount of charge is reduced up to 58% as compared to R22. Overall, R170/R290 mixture is a good long term 'drop-in' candidate to replace R22 in residential air-conditioners and heat pumps.

Performance Characteristics of Refrigeration System Using R744 as a Secondary Refrigerant (2차 냉매로 천연냉매 R744를 사용하는 냉동시스템의 성능 특성)

  • Yi, Wen-Bin;Jo, Hwan;Yoon, Jung-In;Choi, In-Soo;Son, Chang-Hyo
    • Journal of Power System Engineering
    • /
    • v.18 no.4
    • /
    • pp.17-22
    • /
    • 2014
  • In this paper, the performance characteristics of R404 indirect refrigeration system using R744 as a secondary refrigerant were investigated experimentally to obtain a optimum design data for this system. First, for the constant experimental conditions, the COP of R404A indirect refrigeration system using R744 as secondary refrigerants decreases with respect to the increases in R404A condensation temperature and temperature difference in R744 cooler. And, the COP of indirect refrigeration system using R744 as secondary refrigerants decreases slightly with decreasing the mass flowrate of R744.

Basic performance analysis of ocean thermal energy conversion using the refrigerant mixture R32/R152a (R32/R152a 혼합냉매를 적용한 해양온도차발전의 기초성능해석)

  • Cha, Sang Won;Lee, Ho Saeng;Moon, Deok Soo;Kim, Hyeon Ju
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.4
    • /
    • pp.502-507
    • /
    • 2014
  • In this paper, performance characteristics of cycles were studied when mixed working fluid was used for ocean thermal energy conversion (OTEC). Among the various mixed refrigerants for industrial heat-pump, R32/R152a used in ocean thermal energy conversion system. For simulations, R32/R152a were used in existing closed cycle and Kalina cycle which is used only ammonia and water as mixed refrigerant. Temperature of the warm heat source was 26 and 29 celsius degree, temperature of the cold heat source was 5 celsius degree. In results of simulation, Gross power of the closed cycle on R32 was 22kW, and efficiency of the cycle was 2.02%. When the mixed refrigerant of R32/R152a, in the ratio of 90 to 10, gross power of the closed cycle was 29.93kW, and efficiency of the cycle was 2.78%. Gross power and cycle efficiency of R32/R152a increased by 36% and 37% than those of existing single refrigerant. Additionally, the same simulations were conducted in Kalina cycle with the same various composition ratio of mixed refrigerant.

Development of a New Refrigerant Mixture (RM-1) to improve the performance of Heat Pump System for Heating and Cooling of the Living Space (생활공간 냉난방용 열펌프의 성능개선을 위한 새로운 혼합냉매(RM-1) 개발)

  • Song, Heon;Ro, Jeong-Geun
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.5
    • /
    • pp.67-76
    • /
    • 2011
  • 생활공간 냉난방용 열펌프의 성능향상을 위해 R22의 대체 냉매로서 새로운 혼합냉매R22/R23/R152a(RM-1)을 개발하고 U. S. A.의 NIST사의 REFPRO Pprogram을 이용해 이 혼합냉매의 P-h diagram을 구성하여 실용화에 이용할 수 있도록 하였다. 본 연구는 실험을 통해 R22와 RM-1의 열펌프 성능효과를 분석하였다. 입 출구 물의 온도와 제2의 전열매체로서 물의 질량유량, 압축기의 소요 에너지 그리고 열펌프의 기타 열적 특성을 다양한 조건하에서 측정하였다. 이 실험 데이터를 통해 공기-물 열펌프 시스템에서의 RM-1과 R22의 성능계수(COP)를 비교하였다. 이를 통해, 혼합냉매 RM-1을 사용하는 열펌프 시스템은 외기온 $-17^{\circ}C$에서도 2.2의 성능계수로 작동하는 결과를 본 연구에서 보여주었다.

Performance Evaluation of $CO_2$ Air-Conditioning System (이산화탄소를 사용하는 냉동 시스템의 성능 평가 (I))

  • 신지영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.24-30
    • /
    • 2000
  • The high-pressure natural refrigerant $CO_2$ is now being evaluated for use in the motor vehicle air-conditioning systems and for several types of unitary equipment. In this study thermodynamic properties of $CO_2$ is compared to those of R-22 and R-134a and the performance characteristics of $CO_2$ refrigeration cycle is analyzed. The results show that the optimum discharge pressure for the cycle performance exists. New design concept for the $CO_2$ refrigeration system should be developed due to the high-operating pressure of itself.

  • PDF