• 제목/요약/키워드: Refractory materials

검색결과 172건 처리시간 0.028초

The Influence of Sintering Atmosphere on the Reduction Behaviour of Refractory Bricks and the Basic Properties of $UO_{2}$ Pellet

  • Lee, Seung-Jae;Kim, Kyu-Tae;Chung, Bum-Jin
    • The Korean Journal of Ceramics
    • /
    • 제4권4호
    • /
    • pp.279-285
    • /
    • 1998
  • The $UO_2$ pellets are usually sintered under hydrogen gas atmosphere. Hydrogen gas may cause unexpected early failure of the refractory bricks in the sintering furnace. In this work, nitrogen was mixed with hydrogen to investigate the effect of nitrogen gas on a failure machanism of the refractory bricks and on the microstructure of the $UO_2$ pellet. The hydrogen-nitrogen mixed gas experiments show that the larger nitrogen the mixed gas contains, the less the refractory materials are reduced by hydrogen. The weight loss measurements at $1400^{\circ}C$ for fire clay and chamotte refractories containing high content of $SiO_2$ indicate that the weight loss rate for the mixed gas is about half of that for the hydrogen gas. Based on the thermochemical analyses, it is proposed that the weight loss is caused by hydrogen-induced reduction of free $SiO_2$ and/or $SiO_2$ bonded to $Al_2O_3$ in the fire clay and chamotte refractories. However, the retardation of the hydrogen-induced $SiO_2$ reduction rate under the mixed gas atmosphere may be due to the reduction of the surface reaction rate between hydrogen gas and refractory materials in proportion to volume fraction of nitrogen gas in the mixed gas. On the other hand, the mixed gas experiments show that the test data for $UO_2$ pellet still meet the related specification values, even if there exists a slight difference in the pellet microstructural parameters between the cases of the mixed gas and the hydrogen gas.

  • PDF

Bending Strength of Textured Alumina Prepared by Slip Casting in a Strong Magnetic Field

  • Suzuki, Tohru S.;Uchikoshi, Tetsuo;Morita, Koji;Hirage, Keijiro;Sakka, Yoshio
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1099-1100
    • /
    • 2006
  • The mechanical properties of ceramics materials can be tailored by designing their microstructures. We have reported that development of texture can be controlled by slip casting in a strong magnetic field followed by heating even for diamagnetic ceramics such as alumina. A strong magnetic field of 12T was applied to the suspension indcuding alumina powder to rotate each particle during slip casting. The sintering was conducted at the desired temperature in air without a magnetic field. C-axis of alumina was parallel to the magnetic field. Bending strength of textured alumina depended on the direction of oriented microstructure.

  • PDF

Cordierite의 합성 및 내화갑제조에 관한 연구 (Synthesis of Cordierite and Preparation of Refractory Setter from Domestic Raw Materials)

  • 지응업;최상욱;김광호
    • 한국세라믹학회지
    • /
    • 제12권4호
    • /
    • pp.19-28
    • /
    • 1975
  • In order to obtain the superior refractory setter having better spalling resistance, cordierite was synthesized from domestic raw materials. Raw mixtures were fired between 125$0^{\circ}C$ and 140$0^{\circ}C$, and qualitative determination of crytallization was investigated by x-ray diffraction analysis. The results obtained are as follows; 1) The optimum batch composition of synthesized cordierite is 80.5% of Hadong kaolin (pink), 14% of Kyulsung tromolite talc and 5.5% of magnesia clinker, and the firing temperature is 1375$^{\circ}C$. 2) The composition of the refractory setter which exhibits the best values for the thermal properties is 40% of synthesized cordierite, 30% of kaolin chamotte(contains more than 60% of mullite), and 30% of Japanese clay. 3) The optimum particle size distribution of ternary mixture consists of 50% of coarse articles (3.327-1.168mm), 25% of intermediate particles (1.168-0.208mm) and 25% of fine particles (0.208-0.000mm).

  • PDF

Studies on Damage Properties of MgO-C Refractories through Hertzian Indentation at Room and High Temperatures

  • Cho, Geun-Ho;Byeun, Yunki;Jung, Yeon-Gil
    • 한국세라믹학회지
    • /
    • 제56권1호
    • /
    • pp.77-83
    • /
    • 2019
  • MgO-C refractories are used in basic furnaces and steel ladles due to their many desirable properties, such as excellent thermal shock resistance via low thermal expansion, and high thermal conductivity. However, the mechanical and thermal properties of the refractory continuously deteriorate by spalling phenomena and pore generation due to the oxidation of graphite, used as a carbon source, indicating that the characteristics and performance of MgO-C refractories need to be improved by using a new material or composition. In this study, the use of a Hertzian indentation test as a method for determining the damage and fracture behavior of an MgO-C refractory is described. The results highlight that Hertzain indentation tests can be one of the important evaluation tools for quasi-plastic damage accumulation of MgO-C refractories during falling process of scrap metal.

티타늄 첨가강의 연주 노즐막힘 기구 (Nozzle Clogging Mechanism in Continuous Casting for Titanium-Containing Steel)

  • 정우광;권오덕;조문규
    • 한국재료학회지
    • /
    • 제19권9호
    • /
    • pp.473-480
    • /
    • 2009
  • In order to provide the mechanism of nozzle clogging, recovered nozzles for high strength steel grade were examined carefully after continuous casting. The thickness of clogged material in SEN is increased in the following order: from the bottom to the top of the nozzle, upper part of slag line, and the pouring hole. Nozzle clogging material begins to form due the adhesion of metal to nozzle wall, the decarburization, and reduction of oxide in the refractory by Al and Ti in the melt. The reduction of oxide in the refractory by Al and Ti improves the wettability of the melt on the refractory and forms a thin Al-Ti-O layer. Metal containing micro alumina inclusions is solidified on the Al-Ti-O layer, and the solid layer grows due to the heat evolution through the nozzle wall. Thermodynamic calculation has been made for the related reactions. The effect of superheat to the nozzle clogging is discussed on ultra low carbon steel and low carbon steel.

Fabrication of Pure Refractory Metals by Resistance Sintering under Ultra High Pressure

  • Zhou, Zhang-Jian;Du, Juan;Song, Shu-Xiang;Ge, Chang-Chun
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1323-1324
    • /
    • 2006
  • Refractory materials, such as W and Mo, are very useful elements for use in high-temperature applications. But it is not easy to fabricat pure W and Mo with very high density and retaining very fine grain size because of their high melting point. In this paper, a newly developed method named as resistance sintering under ultra high pressure was use to fabricate pure fine-grained W and Mo. The microstructure was analysis by SEM. The sintering mechanism is primary analyzed. Basic physical property of these sintered pure W and Mo, such as hardness, bend strength, are tested.

  • PDF

Ten-Year Performance of Shell-Treated Wooden Deck

  • RA, Jong Bum
    • Journal of the Korean Wood Science and Technology
    • /
    • 제47권6호
    • /
    • pp.667-673
    • /
    • 2019
  • The performance of a wooden deck made of refractory materials that have difficulties in achieving target penetrations as stipulated in the specification and quality standards for treated wood in Korea, was assessed via a case study in this research. A wooden deck built in Jinju in 2009 was selected for this study because of its fabrication method using pressure and treated refractory materials. The penetration and retention analysis did not satisfy the domestic standard for treated wood. Inspection of the deck in 2019 revealed that the deck had been attacked by decay fungi. Cap rails showed much deeper and wider checking on their surface compared with the top and base rails, resulting in a severe fungal attack. The decking boards exhibited severe fungal decay primarily in the end parts. However, the rails and balusters without checks and posts were virtually free of fungal attack irrespective of the preservative penetration measures. Copper content in the soil 5 cm away from the deck was less than 150 mg/kg, implying that copper movement in the soil was very limited. These results suggest that the inhibition of surface propagation and the protection of end surfaces are essential factors in increasing the longevity of treated wooden decks; further, the results also showed that the deck was within an acceptable range from the point of copper contamination.

난치성 족저 근막염의 체외충격파를 이용한 치료 (Extracorporeal Shock Wave Therapy for the Treatment of Refractory Plantar Fasciitis)

  • 최우진;이진우;곽윤해
    • 대한족부족관절학회지
    • /
    • 제11권1호
    • /
    • pp.51-56
    • /
    • 2007
  • Purpose: The objective of this study was to report the outcomes of patients treated with extracorporeal shock wave therapy (ESWT) for refractory plantar fasciitis of the foot. Materials and Methods: From November 2005 to October 2006, a total of sixty-two patients with refractory plantar fasciitis were treated with extracorporeal shock wave therapy. The main outcome measurements were visual analogue scale (VAS) and Roles and Maudsley score evaluated before treatment and at one and six months after treatment. Results: Roles and Maudsley score was excellent (0%), good (6.4%), fair (35.4%) and poor (58.2%) before treatment which improved to excellent (56.5%), good (38.7%), fair (4.8%) and poor (0%) at final follow-up. VAS scores also significantly improved after ESWT (p<0.05). There was no statistically significant correlation between clinical results and body mass index (BMI) (p=0.102). Conclusion: Extracorporeal shock wave therapy appears to be an effective and safe treatment modality for refractory plantar fasciitis and may help the patient to avoid surgery for refractory heel pain.

  • PDF