• 제목/요약/키워드: Refractive index compensation

검색결과 6건 처리시간 0.02초

초정밀 스테이지의 반복정밀도 분석 및 보정 (Analysis and compensation of Repeatability for Ultra-precision Stage)

  • 박종하;황주호;박천홍;홍준희
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.800-803
    • /
    • 2004
  • The refractive index of the laser interferometer is compensated using the simultaneously measured variations of room temperature and humidity in the method. In order to investigate the limit of compensation, the stationary test against two fixed reflectors mounted on the zerodur plate is performed firstly. From the experiment, it is confirmed that the measuring error of the laser interferometer can be improved from 0.12$\mu$m to 0.17$\mu$m by the application of the method. Secondly, for the verification of the compensating effect, it is applied to estimate the positioning accuracy of an ultra precision aerostatic stage. Two times of the refractive index compensation are performed to acquire the positioning error of the stage from the initially measured data, that is, to the initially measured positioning error and to the measured positioning error profile after the NC compensation. Although the positioning error of anaerostatic stage cannot be clarified perfectly, it is known that by the compensation method, the measuring error by the laser interferometer can be improved to within 0.15$\mu$m. English here.

  • PDF

레이저간섭계의 위치결정정밀도 측정오차 개선 (Improvement of the Laser Interferometer Error in the Positioning Accuracy Measurement)

  • 황주호;박천홍;이찬홍;김승우
    • 한국정밀공학회지
    • /
    • 제21권9호
    • /
    • pp.167-173
    • /
    • 2004
  • The heterodyne He-Ne laser interferometer is the most widely used sensing unit to measure the position error. It measures the positioning error from the displacement of a moving reflector in terms of the wave length. But, the wave length is affected by the variation of atmospheric temperature. Temperature variation of 1$^\circ C$ results in the measuring error of 1ppm. In this paper, for measuring more accurately the position error of the ultra precision stage, the refractive index compensation method is introduced. The wave length of the laser interferometer is compensated using the simultaneously measured room temperature variations in the method. In order to investigate the limit of compensation, the stationary test against two fixed reflectors mounted on the zerodur$\circledR$ plate is performed firstly. From the experiment, it is confirmed that the measuring error of the laser interferometer can be improved from 0.34${\mu}m$ to 0.11${\mu}m$ by the application of the method. Secondly, for the verification of the compensating effect, it is applied to estimate the positioning accuracy of an ultra precision aerostatic stage. Two times of the refractive index compensation are performed to acquire the positioning error of the stage from the initially measured data, that is, to the initially measured positioning error and to the measured positioning error profile after the NC compensation. Although the positioning error of an aerostatic stage cannot be clarified perfectly, it is known that by the compensation method, the measuring error by the laser interferometer can be improved to within 0.1${\mu}m$.

공기정합 스테이지의 위치결정오차 분석 및 보정 (Analysis and compensation of positioning error for aerostatic stage)

  • 황주호;박천홍;이찬흥;김승우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.378-391
    • /
    • 2002
  • A 250mm stroke aerostatic stage, which detects position with laser scale and is driven by linear motor, is made and analyzed positioning error in 20$\pm$ 0.5 $^{\circ}C$ controlled atmosphere, aiming at investigating positioning characteristic of ultra-precision stage. We prove this aerostatic stage has a 10nm micro step resolution by experiment. By means of analyzing laser interferometer system, the scale of measuring error is about 0.2-0.4$\mu\textrm{m}$ according to refractive index error from missing the temperature change. To improve laser interferometer system, compensate refractive index error using measuring data from thermocouple. And, confirm 0.10$\mu\textrm{m}$ repeatability and 0.13 $\mu\textrm{m}$ positioning accuracy using the compensating refractive index. Also, we confirm 0.07 ${\mu}{\textrm}{m}$ repeatability of the stage using capacitive displacement sensor.

  • PDF

절연박막에서 유전상수의 보상에 관한 연구 (Study on the Compensation of Dielectric Constant in Dielectric Materials)

  • 오데레사
    • 한국진공학회지
    • /
    • 제18권6호
    • /
    • pp.435-439
    • /
    • 2009
  • SiOC 박막의 유전상수가 낮아지는 원인에 대하여 굴절계수와 C-V 측정법을 이용하여 얻은 파라미터를 사용하여 연구되었다. SiOC 박막은 해리된 가스의 재결합을 통하여 이온결합에 의해서 형성된다. 전통적으로 유전상수는 굴절률의 제곱으로 얻을 수 있거나 혹은 금속/절연체/실리콘 구조에서 C-V 측정법을 이용하여 얻어진다. 유전상수는 이온과 전자 성분으로 이루어졌다. 그래서 이온과 전자성분을 포함한 SiOC 박막의 평균적인 유전상수에 대하여 조사되었다. 유전상수는 열처리 후 감소되었다. 증착한 박막은 대부분이 이온효과에 의하여 유전상수가 구성되는 경향성이 있으며, 반대로 열처리한 박막에서는 전자에 의한 효과가 컸다. 왜냐하면, 이온의 효과가 열처리에 의해 감소되기 때문이다. 결과적으로 열처리 공정을 통하여 SiOC 박막의 이온효과는 감소하고 전자의 효과는 증가된다는 것을 확인하였다.

일반광섬유격자의 분산보상 특성 분석 (The characteristics of dispersion compensation in uniform fiber grating)

  • 이종훈;송정환;이경식;이유섭;전찬오;전건익
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 E
    • /
    • pp.1834-1836
    • /
    • 1998
  • The characteristics of dispersion compensation in uniform fiber grating is studied according to grating length, the refractive index modulation depth, and Gaussian window parameter(G). A 50cm-long uniform grating apodized by Gaussian function(G=10) with bandwidth of ${\sim}0.8nm$ and small noise is designed.

  • PDF

Simulation Research on the Thermal Effects in Dipolar Illuminated Lithography

  • Yao, Changcheng;Gong, Yan
    • Journal of the Optical Society of Korea
    • /
    • 제20권2호
    • /
    • pp.251-256
    • /
    • 2016
  • The prediction of thermal effects in lithography projection objective plays a significant role in the real-time dynamic compensation of thermal aberrations. For the illuminated lithography projection objective, this paper applies finite element analysis to get the temperature distribution, surface deformation and stress data. To improve the efficiency, a temperature distribution function model is proposed to use for the simulation of thermal aberrations with the help of optical analysis software CODE V. SigFit is approved integrated optomechanical analysis software with the feature of calculating OPD effects due to temperature change, and it is utilized to prove the validation of the temperature distribution function. Results show that the impact of surface deformation and stress is negligible compared with the refractive index change; astigmatisms and 4-foil aberrations dominate in the thermal aberration, about 1.7 λ and 0.45 λ. The system takes about one hour to reach thermal equilibrium and the contrast of the imaging of dense lines get worse as time goes on.