DOI QR코드

DOI QR Code

Study on the Compensation of Dielectric Constant in Dielectric Materials

절연박막에서 유전상수의 보상에 관한 연구

  • Oh, Teresa (School of Electronic and Information Engineering, Cheongju University)
  • Published : 2009.11.30

Abstract

The reason of lowering the dielectric constant of SiOC film was studied using parameters obtained from C-V measurement and refractive index. SiOC film was formed by the force of ionic bonding during the recombination of dissociated gases. Generally, the dielectric constant was obtained from the square of the refractive index or C-V measurement using the metal/insulator/Si structure. The dielectric constant consists of the ionic and electronic elements. It was researched about the dielectric constant of SiOC film using the average of the ionic and electronic elements. The dielectric constant decreased after annealing process. As deposited films trended toward the dielectric constant consisted of most ionic elements, on the other hand, annealed films mostly consisted of electronic elements. Because the effect of ionic elements reduced after annealing. Consequently, it was found that the electronic effect of SiOC film increased and the ionic effect of SiOC film decreased by the after-annealing.

SiOC 박막의 유전상수가 낮아지는 원인에 대하여 굴절계수와 C-V 측정법을 이용하여 얻은 파라미터를 사용하여 연구되었다. SiOC 박막은 해리된 가스의 재결합을 통하여 이온결합에 의해서 형성된다. 전통적으로 유전상수는 굴절률의 제곱으로 얻을 수 있거나 혹은 금속/절연체/실리콘 구조에서 C-V 측정법을 이용하여 얻어진다. 유전상수는 이온과 전자 성분으로 이루어졌다. 그래서 이온과 전자성분을 포함한 SiOC 박막의 평균적인 유전상수에 대하여 조사되었다. 유전상수는 열처리 후 감소되었다. 증착한 박막은 대부분이 이온효과에 의하여 유전상수가 구성되는 경향성이 있으며, 반대로 열처리한 박막에서는 전자에 의한 효과가 컸다. 왜냐하면, 이온의 효과가 열처리에 의해 감소되기 때문이다. 결과적으로 열처리 공정을 통하여 SiOC 박막의 이온효과는 감소하고 전자의 효과는 증가된다는 것을 확인하였다.

Keywords

References

  1. R. Navamathavan and C. K. Choi, Journal of the Korean Physical Soc. 48, 1675 (2006)
  2. T. Oh, Journal of the Korean Vaccum Society, 18(1), 49 (2009) https://doi.org/10.5757/JKVS.2009.18.1.049
  3. H. Ohsaki, Y. Shibayama, A. Nakajim, A. Kinbara, and T. Watanabe, Thin Solid Films 502, 63 (2006) https://doi.org/10.1016/j.tsf.2005.07.244
  4. K. Lee and J. Yu, Surface Science 589, 8 (2005) https://doi.org/10.1016/j.susc.2005.05.040
  5. K. Meera, C. S. Yang, and C. K. Choi, Journal of the Korean Physical Society, 48, 1713 (2006)
  6. J. C. Lee and Y. J. Kim, Journal of the Korean Vacuum Society, 17, 189 (2008) https://doi.org/10.5757/JKVS.2008.17.3.189
  7. T. Oh, IEEE transactions on Nanotechnology, 5, 23 (2006) https://doi.org/10.1109/TNANO.2005.858591
  8. J. Widodo, W. Lu, S. G. Mhaisalkar, L. C. Hsia, P. Y. Tan, L. Shen, and K. Y. Zeng, Thin Solid Films, 462-463, 213 (2004) https://doi.org/10.1016/j.tsf.2004.05.027
  9. T. Oh, Journal of the Korean Physical Society, 51, 528 (2006) https://doi.org/10.3938/jkps.51.528
  10. Li Ding Yu, Sun Lei, Zhang Sheng Dong, Wang Yi, Liu Xiao Yan, and Han Ru Qi, Chin. Phys. Soc. 16, 240 (2007) https://doi.org/10.1088/1009-1963/16/1/041
  11. J. Frenkel, Phys. Rev. 54, 647 (1938) https://doi.org/10.1103/PhysRev.54.647
  12. M. J. Kellicutt, I. S. Suzuki, C. R. Burr, M. Suzuki, M. Ohashi, and M. S. Whittingham, Physical Review B. 47(20), 13664 (1993) https://doi.org/10.1103/PhysRevB.47.13664
  13. Soo In Kim and Chang Woo Lee, Journal of the Korean Vacuum Society 16(5), 348 (2007) https://doi.org/10.5757/JKVS.2007.16.5.348

Cited by

  1. Real Time Temperature Distribution Measurement of a Microheater by Using Off-Axis Digital Holography vol.20, pp.2, 2011, https://doi.org/10.5757/JKVS.2011.20.2.106