• Title/Summary/Keyword: Refraction profiling

Search Result 8, Processing Time 0.017 seconds

Seismic Refraction Survey for Installation of Water Pipe on a Side of the Seomjin River near Namwon (남원 섬진강변 관로 매설을 위한 굴절파 탐사)

  • Kim, Gi Yeong;U, Nam Cheol;Kim, Hyeong Su
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.3
    • /
    • pp.209-216
    • /
    • 1999
  • In order to get geologic information necessary for underground installation of water pipe, seismic refraction profiling was applied to the southwest side of the Seomjin River which flows between Namwon-gun, Cholabuk-do and Gokseong-gun, Cholanam-do. Before obtaining the in-line refraction data, walkaway data were recorded with 1 m geophone interval and -36∼+36 m offset range. From the walkaway data, it is interpreted that a dry soil layer with the average velocity of 585 m/s covers wet sediments with the average velocity of 1,326 m/s. The second layer overlies basements nearly horizontally with the average velocity of 4,218 m/s. Refraction profiling of 220 m long with the geophone interval of 2 m is interpreted with the Generalized Reciprocal Method (GRM). Three layers are identified with average velocities of 688 m/s, 1,473 m/s, and 3,776 m/s, respectively. The depth to the bedrock impossible for ripping ranges between two extremes, 1.51∼2.43 m and 2.25∼3.54 m, depending upon thickness of the hidden layer. A typical shortcoming of refraction method, the hidden layer problem, prevents accurate estimation in depth of the second layer.

  • PDF

Interpretation on the Subsurface Velocity Structure by Seismic Refraction Tomography (탄성파 굴절법 토모그래피를 이용한 지반의 속도분포 해석)

  • Cho, Chang-Soo;Lee, Hee-Il;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.1
    • /
    • pp.6-17
    • /
    • 2002
  • Refraction tomography was developed to interpret subsurface velocity structure easily in topographic conditions. It was applied to synthetic refraction data to find the factors for optimization of applicability of refraction tomography such as configuration of profiling and its length, spacing of geophones and sources and topographic conditions. Also, low velocity layer near VSP hole could be detected by joint inversion with refraction and VSP data. Continuity of subsurface velocity structure in two different spread lines for area of house land development was good in case of applying our algorithm and velocity structure was classified quantitatively to evaluate rippability for engineering works.

대규모 발파 후보지의 지하구조 학인을 위한 탄성파 굴절법 조사

  • Kim, Gi-Yeong;Kim, Dong-Hun
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.2
    • /
    • pp.153-161
    • /
    • 2002
  • In order t determine blasting sites for the crustal refraction studies in the korean peninsula, seismic refraction profiling was conducted at two sites in the reclaimed land of Seosan. At a quarry for construction material and another site on a rice field 2km east of the quarry, 24 channel refraction profiling of 46m was conducted at a geophone spacing of 2m. Seismic velocity profiles obtained through tomographic invesion reveal that the quarry is regarded as an ideal place for blasting based on the observation that fresh basements with seismic velocities of 3,900 m/s or greater locate approximately 6m deep. On the contrary, under the reclaimed rice field, the basements are weathered more, of slower velocities, and buried deeper than quarry, indicating not an ideal location for detonating seismic explosives of large amounts.

  • PDF

Comparison of Shear-wave Velocity Sections from Inverting SH-wave Traveltimes of First Arrivals and Surface Wave Dispersion Curves (SH파 초동주시 역산과 표면파 분산곡선 역산으로부터 구한 횡파속도 단면 비교)

  • Lee, Chang-Min;Kim, Ki-Young
    • Journal of the Korean Geophysical Society
    • /
    • v.8 no.2
    • /
    • pp.67-74
    • /
    • 2005
  • Two-dimensional S-wave velocity sections from SH-wave refraction tomography and surface wave dispersions were obtained by inverting traveltimes of first arrivals and surface wave dispersions, respectively. For the purpose of comparison, a P-wave velocity tomogram was also obtained from a P-wave refraction profiling. P and Rayleigh waves generated by vertical blows on a plate with a sledgehammer were received by 100- and 4.5-Hz geophones, respectively. SH-waves generated by horizontal blows on both sides of a 50 kg timber were received by 8 Hz horizontal geophones. The shear-wave signals were enhanced subtracting data of left-side blows from ones of the right-side blows. Shear-wave velocities from tomography inversion of first-arrival times were compared with ones from inverting dispersion curves of Rayleigh waves. Although the two velocity sections look similar to each other in general, the one from the surface waves tends to have lower velocities. First arrival picking of SH waves is troublesome since P and PS-converted waves arrive earlier than SH waves. Application of the surface wave method, on the other hand, is limited where lateral variation of subsurface tructures is not mild.

  • PDF

Case study on the lake-land combined seismic survey for underground LPG storage construction (LPG 지하저장기지 건설을 위한 수륙혼합 탄성파탐사 사례)

  • Cha Seong-Soo;Park Keun-Pil;Lee Ho-Young;Lee Hee-Il;Kim Ho-Young
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2002.09a
    • /
    • pp.101-125
    • /
    • 2002
  • A lake seismic survey was carried out to investigate possible geohazards for construction of the underground LPG storage at Namyang Lake. The proposed survey site has a land-lake combined geography and furthermore water depth of the lake is shallow. Therefore, various seismic methods such as marine single channel high resolution seismic reflection survey, sonobuoy refraction survey, land refraction survey and land-lake combined refraction survey were applied. Total survey amounts are 34 line-km of high resolution lake seismic survey, 14 lines of sonobuoy refraction survey, 890 m of land refraction survey and 8 lines of land-lake combined refraction survey. During the reflection survey, there were severe water reverberations from the lake bottom obscured subsurface profiling. These strong multiple events appeared in most of the survey area except the northern and southern area near the embankment where seems to be accumulated mainly mud dominated depositions. The sonobuoy refraction profiles also showed the same Phenomena as those of reflection survey. Meanwhile the results of the land-lake combined refraction survey showed relatively better qualities. However, the land refraction survey did not so due to low velocity soil layer and electrical noise. Summarized results from the lake seismic survey are that acoustic basement with relatively flat pattern appeared 30m below water level and showed three types of bedrock such as fresh, moderately weathered and weathered type. According to the results of the combined refraction survey, a velocity distribution pattern of the lake bottom shows three types of seismic velocity zone such as >4.5 km/s, 4.5-4.0km/s and <4.0km/s. The major fault lineament in the area showed NW-SE trend which was different from the Landsat image interpretation. A drilling was confirmed estimated faults by seismic survey.

  • PDF

Multichannel Analysis of Surface Waves (MASW) Active and Passive Methods

  • Park, Choon-Byong
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.17-22
    • /
    • 2006
  • Shear modulus is directly linked to material's stiffness and is one of the most critical engineering parameters. Seismically, shear-wave velocity (Vs) is its best indicator. Although methods like refraction, down-hole, and cross-hole shear-wave surveys can be used, they are generally known to be tougher than any other seismic methods in field operation, data analysis, and overall cost. On the other hand, surface waves, commonly known as ground roll, are always generated in all seismic surveys with the strongest energy, and their propagation velocities are mainly determined by Vs of the medium. Furthermore, sampling depth of a particular frequency component of surface waves is in direct proportion to its wavelength and this property makes the surface wave velocity frequency dependent, i.e., dispersive. The multichannel analysis of surface waves (MASW) method tries to utilize this dispersion property of surface waves for the purpose of Vs profiling in 1-D (depth) or 2-D (depth and surface location) format. The active MASW method generates surface waves actively by using an impact source like sledgehammer, whereas the passive method utilizes those generated passively by cultural (e.g., traffic) or natural (e.g., thunder and tidal motion) activities. Investigation depth is usually shallower than 30 m with the active method, whereas it can reach a few hundred meters with the passive method. Overall procedures with both methods are briefly described.

  • PDF

Surface Geophysical Investigations of a Slope-failure Terrane at Wiri, Andong, Korea (안동시 위리의 사면파괴 지역에 대한 지표 물리탐사)

  • 김지수;한수형;정교철
    • Economic and Environmental Geology
    • /
    • v.34 no.2
    • /
    • pp.193-204
    • /
    • 2001
  • A geophysical survey was undertaken at Wiri area, Andong, to delineate subsurface structure and reveal the fault zone nearby which heaving of road and subsidence of slope occurred in 1997, especially in the heavy rainy season. Electrical resistivity methods of dipole-dipole array profiling and Schlumberger array sounding and seismic methods of refraction and reflection were performed for the mapping of clay layer, which was interpreted to be the major factor among the reasons of slope deformation. The clay layer was characterized by lower electrical resistivities (< $100{\Omega}{\cdot}m$) and lower seismic velocities (<400 m/s), respectively. The results of electrical and seismic surveys showed that subsidence of slope was probably associated with sliding of wet clay on 18SW/NNW trending fault plane, while heaving of road was probably caused by upward movement of the wet clay through subvertical NNE trending fault.

  • PDF

Assessing the repeatability of reflection seismic data in the presence of complex near-surface conditions CO2CRC Otway Project, Victoria, Australia (복잡한 천부구조하에서 반사법 탄성파자료의 반복성에 대한 평가, 호주, 빅토리아, CO2CRC Otway 프로젝트)

  • Al-Jabri, Yousuf;Urosevic, Milovan
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.1
    • /
    • pp.24-30
    • /
    • 2010
  • This study utilises repeated numerical tests to understand the effects of variable near-surface conditions on time-lapse seismic surveys. The numerical tests were aimed at reproducing the significant scattering observed in field experiments conducted at the Naylor site in the Otway Basin for the purpose of $CO_2$ sequestration. In particular, the variation of elastic properties of both the top soil and the deeper rugose clay/limestone interface as a function of varying water saturation were investigated. Such tests simulate the measurements conducted in dry and wet seasons and to evaluate the contribution of these seasonal variations to seismic measurements in terms of non-repeatability. Full elastic pre-stack modelling experiments were carried out to quantify these effects and evaluate their individual contributions. The results show that the relatively simple scattering effects of the corrugated near-surface clay/limestone interface can have a profound effect on time-lapse surveys. The experiments also show that the changes in top soil saturation could potentially affect seismic signature even more than the corrugated deeper surface. Overall agreement between numerically predicted and in situ measured normalised root-mean-square (NRMS) differences between repeated (time-lapse) 2D seismic surveys warrant further investigation. Future field studies will include in situ measurements of the elastic properties of the weathered zone through the use of 'micro Vertical Seismic Profiling (VSP)' arrays and very dense refraction surveys. The results of this work may impact on other areas not associated with $CO_2$ sequestration, such as imaging oil production over areas where producing fields suffer from a karstic topography, such as in the Middle East and Australia.